首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proposed mechanism for metabolic flow regulation involves the saturation-dependent release of ATP by red blood cells, which triggers an upstream conducted response signal and arteriolar vasodilation. To analyze this mechanism, a theoretical model is used to simulate the variation of oxygen and ATP levels along a flow pathway of seven representative segments, including two vasoactive arteriolar segments. The conducted response signal is defined by integrating the ATP concentration along the vascular pathway, assuming exponential decay of the signal in the upstream direction with a length constant of approximately 1 cm. Arteriolar tone depends on the conducted metabolic signal and on local wall shear stress and wall tension. Arteriolar diameters are calculated based on vascular smooth muscle mechanics. The model predicts that conducted responses stimulated by ATP release in venules and propagated to arterioles can account for increases in perfusion in response to increased oxygen demand that are consistent with experimental findings at low to moderate oxygen consumption rates. Myogenic and shear-dependent responses are found to act in opposition to this mechanism of metabolic flow regulation.  相似文献   

2.
To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situationin vivo where as large number of individual nephrons act in parallel, each simulation was performed with 125 parallel versions of the model. The key parameters of the 125 versions of the model were chosen randomly within the physiological range. None of the constituent models, i.e., the TGF and the myogenic, could alone reproduce the experimental observations. However, in combination they reproduced most of the features of the various transfer functions calculated from the experimental data. The major discrepancy was the presence of a bimodal distribution of the admittance phase in the simulations. This is not consistent with most of the experimental data, which shows a unimodal curve for the admittance phase. The ability of the model to reproduce the experimental data supports the hypothesis that dynamic autoregulation of renal blood flow is due to the combined action of TGF and the myogenic response.  相似文献   

3.
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(2+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(2+) channel to increase intracellular Ca(2+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions.  相似文献   

4.
Myogenic response, flow-dependent dilation, and direct metabolic control are important mechanisms controlling coronary flow. A model was developed to study how these control mechanisms interact at different locations in the arteriolar tree and to evaluate their contribution to autoregulatory and metabolic flow control. The model consists of 10 resistance compartments in series, each representing parallel vessel units, with their diameters determined by tone depending on either flow and pressure [flow-dependent tone reduction factor (TRF(flow)) x Tone(myo)] or directly on metabolic factors (Tone(meta)). The pressure-Tone(myo) and flow-TRF(flow) relations depend on the vessel size obtained from interpolation of data on isolated vessels. Flow-dependent dilation diminishes autoregulatory properties compared with pressure-flow lines obtained from vessels solely influenced by Tone(myo). By applying Tone(meta) to the four distal compartments, the autoregulatory properties are restored and tone is equally distributed over the compartments. Also, metabolic control and blockage of nitric oxide are simulated. We conclude that a balance is required between the flow-dependent properties upstream and the constrictive metabolic properties downstream. Myogenic response contributes significantly to flow regulation.  相似文献   

5.
A mathematical model of the renal vascular and tubular systems was used to examine the possibility that synergistic interactions might occur between the tubuloglomerular feedback (TGF) and myogenic autoregulatory mechanisms in the kidney. To simulate the myogenic mechanism, the renal vasculature was modelled with a resistance network where the total preglomerular resistance varies with intravascular pressure. In addition, a steady-state model of glomerular filtration, proximal and Henle's loop reabsorption, and TGF-modulation of afferent arteriolar resistance was derived. The results show that, if TGF acts on the distal portion of the preglomerular vasculature, then any TGF-induced vasoconstriction should raise upstream intravascular pressure and, thereby, trigger a myogenic response in the more proximal vascular segments, a phenomenon referred to as an ascending myogenic (AMYO) response. The model further predicts that the magnitude of the AMYO response can be similar in magnitude to the TGF-induced increment in afferent resistance. Hence, the effects of TGF excitation on whole kidney hemodynamics may be much greater than pedicted from measurements in single nephrons. Moreover, a significant fraction of the intrinsic myogenic autoregulatory response to increased renal perfusion pressure may result from a synergistic interaction between the TGF and myogenic mechanisms.  相似文献   

6.
Autoregulation of renal blood flow (RBF) is caused by the myogenic response (MR), tubuloglomerular feedback (TGF), and a third regulatory mechanism that is independent of TGF but slower than MR. The underlying cause of the third regulatory mechanism remains unclear; possibilities include ATP, ANG II, or a slow component of MR. Other mechanisms, which, however, exert their action through modulation of MR and TGF are pressure-dependent change of proximal tubular reabsorption, resetting of RBF and TGF, as well as modulating influences of ANG II and nitric oxide (NO). MR requires < 10 s for completion in the kidney and normally follows first-order kinetics without rate-sensitive components. TGF takes 30-60 s and shows spontaneous oscillations at 0.025-0.033 Hz. The third regulatory component requires 30-60 s; changes in proximal tubular reabsorption develop over 5 min and more slowly for up to 30 min, while RBF and TGF resetting stretch out over 20-60 min. Due to these kinetic differences, the relative contribution of the autoregulatory mechanisms determines the amount and spectrum of pressure fluctuations reaching glomerular and postglomerular capillaries and thereby potentially impinge on filtration, reabsorption, medullary perfusion, and hypertensive renal damage. Under resting conditions, MR contributes approximately 50% to overall RBF autoregulation, TGF 35-50%, and the third mechanism < 15%. NO attenuates the strength, speed, and contribution of MR, whereas ANG II does not modify the balance of the autoregulatory mechanisms.  相似文献   

7.
We investigated dynamic characteristics of renal blood flow (RBF) autoregulation and relative contribution of underlying mechanisms within the autoregulatory pressure range in rats. Renal arterial pressure (RAP) was reduced by suprarenal aortic constriction for 60 s and then rapidly released. Changes in renal vascular resistance (RVR) were assessed following rapid step reduction and RAP rise. In response to rise, RVR initially fell 5-10% and subsequently increased approximately 20%, reflecting 93% autoregulatory efficiency (AE). Within the initial 7-9 s, RVR rose to 55% of total response providing 37% AE, reaching maximum speed at 2.2 s. A secondary RVR increase began at 7-9 s and reached maximum speed at 10-15 s. Response times suggest that the initial RVR reflects the myogenic response and the secondary tubuloglomerular feedback (TGF). During TGF inhibition by furosemide, AE was 64%. The initial RVR rise was accelerated and enhanced, providing 49% AE, but it represented only 88% of total. The remaining 12% indicates a third regulatory component. The latter contributed up to 50% when the RAP increase began below the autoregulatory range. TGF augmentation by acetazolamide affected neither AE nor relative myogenic contribution. Diltiazem infusion markedly inhibited AE and the primary and secondary RVR increases but left a slow component. In response to RAP reduction, initial vasodilation constituted 73% of total response but was not affected by furosemide. The third component's contribution was 9%. Therefore, RBF autoregulation is primarily due to myogenic response and TGF, contributing 55% and 33-45% in response to RAP rise and 73% and 18-27% to RAP reduction. The data imply interaction between TGF and myogenic response affecting strength and speed of myogenic response during RAP rises. The data suggest a third regulatory system contributing <12% normally but up to 50% at low RAP; its nature awaits further investigation.  相似文献   

8.
To investigate blood flow autoregulation in filtering and nonfiltering kidneys, renal blood flow was determined during graded reductions in renal perfusion pressure in seven anesthetized dogs containing both a filtering and nonfiltering kidney. In each dog, one kidney was made nonfiltering by the method of EH Blaine, JO Davis, and RT Witty (Circ Res 27:1081-1089, 1970). Renal perfusion pressure was decreased from 129 to 115, 99, and 83 mm Hg by stepwise constriction of the suprarenal aorta. In filtering kidneys, the maximum decrease in renal perfusion pressure reduced renal blood flow only 20.1% of control whereas renal blood flow of nonfiltering kidneys decreased by 41.0% of control. During aortic constriction, renal vascular resistance of nonfiltering kidneys remained unchanged or slightly increased. These hemodynamic changes were associated with significantly greater autoregulation indices in nonfiltering kidneys. In eight dogs with nonfiltering kidneys, competitive inhibition of adenosine with theophylline (9 mg/kg iv) restored autoregulation of renal blood flow as shown by significant decreases in renal vascular resistance. These data indicate that in the nonfiltering kidney model, autoregulation of renal blood flow is impaired. It is suggested that this impaired autoregulatory response may result from renal ischemia and the vasoconstrictor influence of elevated intrarenal adenosine concentration.  相似文献   

9.
L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40–80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.  相似文献   

10.
Transfer function analysis of blood pressure and cerebral blood flow in humans demonstrated that cerebrovascular autoregulation operates most effectively for slow fluctuations in perfusion pressure, not exceeding a frequency of approximately 0.15 Hz. No information on the dynamic properties of cerebrovascular autoregulation is available in rats. Therefore, we tested the hypothesis that cerebrovascular autoregulation in rats is also most effective for slow fluctuations in perfusion pressure below 0.15 Hz. Normotensive Wistar-Kyoto rats (n = 10) were instrumented with catheters in the left common carotid artery and jugular vein and flow probes around the right internal carotid artery. During isoflurane anesthesia, fluctuations in cerebral perfusion pressure were elicited by periodically occluding the abdominal aorta at eight frequencies ranging from 0.008 Hz to 0.5 Hz. The protocol was repeated during inhibition of myogenic vascular function (nifedipine, 0.25 mg/kg body wt iv). Increases in cerebral perfusion pressure elicited initial increases in cerebrovascular conductance and decreases in resistance. At low occlusion frequencies (<0.1 Hz), these initial responses were followed by decreases in conductance and increases in resistance that were abolished by nifedipine. At occlusion frequencies of 0.1 Hz and above, the gains of the transfer functions between pressure and blood flow and between pressure and resistance were equally high in the control and nifedipine trial. At occlusion frequencies below 0.1 Hz, the gains of the transfer functions decreased twice as much under control conditions than during nifedipine application. We conclude that dynamic autoregulation of cerebral blood flow is restricted to very low frequencies (<0.1 Hz) in rats.  相似文献   

11.
12.
In an attempt to explore the acute maternal responses to exercise we measured oxygen consumption, uterine blood flow, and blood volume in 13 chronically catheterized pregnant sheep at rest and while exercising on a treadmill. With maximal exercise O2 consumption increased 5.6 times, from a resting value of 5.8 +/- 0.3 (SE) to 32.1 +/- 2.8 ml X min -1 X kg -1, cardiac output increased 2.7 times, from 149 +/- 8 to 404 +/- 32 ml X min -1 X kg -1, and arteriovenous oxygen content difference increased 2.1 times, from 3.9 +/- 0.2 to 8.0 +/- 0.4 ml X dl -1. Total uterine blood flow decreased from a mean resting value of 292 +/- 6 to 222 +/- 19 ml X min -1 X kg fetus -1 near exhaustion during prolonged (40 min) exercise at 70% maximal oxygen consumption. Maternal blood volume decreased 14% (P less than 0.01) from 67.5 +/- 3.7 to 57.8 +/- 3.6 ml X kg -1 during this exercise period, with a 20% decrease in plasma volume without a change in red cell volume. We conclude that uterine blood flow decreases during maternal exercise. However, hemoconcentration helps to maintain a relatively constant oxygen delivery to the uterus.  相似文献   

13.
14.
Impaired autoregulation of cerebral blood flow (CBF) contributes to CNS damage during neonatal meningitis. We tested (i) the hypothesis that cerebrovascular autoregulation is impaired during early onset group B streptococcal (GBS) meningitis, (ii) whether this impairment is regulated by vasoactive mediators such as prostaglandins and (or) nitric oxide (NO), and (iii) whether this impairment is preventable by specific and (or) nonspecific inhibitors: dexamethasone, ibuprofen, and Nomega-nitro-L-arginine, a NO inhibitor. Sterile saline or 10(9) colony-forming units (cfu) of heat-killed GBS was injected into the cerebral ventricle of newborn piglets. CBF autoregulation was determined by altering cerebral perfusion pressure (CPP) with balloon-tipped catheters placed in the aorta. GBS produced a narrow range of CBF autoregulation due to an impairment at the upper limit of CPP. We report that in vivo in the early stages (first 2 h) of induced GBS inflammation (i) GBS impairs the upper limit of cerebrovascular autoregulation; (ii) ibuprofen, dexamethasone, and Nomega-nitro-L-arginine not only prevent this GBS-induced autoregulatory impairment but improve the range of cerebrovascular autoregulation; (iii) these autoregulatory changes do not involve circulating cerebral prostanoids; and (iv) the observed changes correlate with the induction of NO synthase gene expression. Thus, acute early onset GBS-induced impairment of the upper limit of CBF autoregulation can be correlated with increases of NO synthase production, suggesting that NO is a vasoactive mediator of CBF.  相似文献   

15.
The role for ANG II in renal blood flow (RBF) autoregulation is unsettled. The present study was designed to test the effect of clamping plasma ANG II concentrations ([ANG II]) by simultaneous infusion of the angiotensin-converting enzyme inhibitor captopril and ANG II on RBF autoregulation in halothane-anesthetized Sprague-Dawley rats. Autoregulation was defined as the RBF response to acute changes in renal perfusion pressure (RPP). Regulation was defined as changes in RBF during long-lasting changes in RPP. The results showed that a prolonged reduction of RPP reset the lower limit of autoregulation from 85 +/- 1 to 73 +/- 2 mmHg (P < 0.05) and regulated RBF to a lower level. Reduction of RPP to just above the lower limit of autoregulation (88 mmHg) induced regulation of RBF to a lower level within 10 min. Clamping [ANG II] per se reset the lower limit of autoregulation to 62 +/- 5 mmHg. In this case, reduction in RPP to 50 mmHg did not induce a downregulation of RBF. We conclude that ANG II plays an important role in the resetting of the autoregulation limits. The ability to regulate RBF to a new level as a response to changes in RPP also depends on changes in [ANG II].  相似文献   

16.
The present study investigated the effect of circulating versus locally present renin on cerebral blood flow (CBF) and its autoregulation in rats. CBF was measured repetitively with the intracarotid 133Xe injection method, whereas blood pressure was lowered to determine the lower limit of autoregulation. To remove renin from the blood, rats were bilaterally nephrectomized and kept alive with peritoneal dialysis for 48 h. Five groups of animals were studied: 1) nephrectomized dialyzed rats, 2) nephrectomized dialyzed rats given a single intravenous dose of the angiotensin-converting enzyme inhibitor captopril (10 mg/kg), 3) sham nephrectomized and dialyzed rats, 4) rats receiving drugs as dialyzed rats but no surgery, and 5) rats given the same diet as the other groups but no drugs and no surgery. Baseline blood pressure was significantly lower in nephrectomized rats compared with controls. Nephrectomy, captopril, sham operation, or dialysis did not influence baseline CBF. The lower limit of CBF autoregulation was significantly lower in nephrectomized (53 +/- 4 mmHg) and sham-operated (58 +/- 4 mmHg) rats compared with diet control rats (78 +/- 3 mmHg). Captopril significantly decreased the lower limit in nephrectomized rats (35 +/- 2 mmHg). Thus removal of circulating renin caused no change in the lower limit of autoregulation. By contrast, captopril lowered the lower limit even in the absence of circulating renin and hence appeared to exert its effect on components of the renin-angiotensin system in the cerebral resistance vessel walls.  相似文献   

17.
The present experiment was designed to measure the synthetic and breakdown rates of muscle protein in the hindlimb of rabbits with or without clamping the femoral artery. l-[ring-(13)C(6)]phenylalanine was infused as a tracer for measurement of muscle protein kinetics by means of an arteriovenous model, tracer incorporation, and tracee release methods. The ultrasonic flowmeter, dye dilution, and microsphere methods were used to determine the flow rates in the femoral artery, in the leg, and in muscle capillary, respectively. The femoral artery flow accounted for 65% of leg flow. A 50% reduction in the femoral artery flow reduced leg flow by 28% and nutritive flow by 26%, which did not change protein synthetic or breakdown rate in leg muscle. Full clamp of the femoral artery reduced leg flow by 42% and nutritive flow by 59%, which decreased (P < 0.05) both the fractional synthetic rate from 0.19 +/- 0.05 to 0.14 +/- 0.03%/day and fractional breakdown rate from 0.28 +/- 0.07 to 0.23 +/- 0.09%/day of muscle protein. Neither the partial nor full clamp reduced (P = 0.27-0.39) the intracellular phenylalanine concentration or net protein balance in leg muscle. We conclude that the flow threshold to cause a fall of protein turnover rate in leg muscle was a reduction of 30-40% of the leg flow. The acute responses of muscle protein kinetics to the reductions in blood flow reflected the metabolic priorities to maintain muscle homeostasis. These findings cannot be extrapolated to more chronic conditions without experimental validation.  相似文献   

18.
Laser noninvasive methods for assessment of a tissue blood flow (BF), for example, the Laser Doppler Flowmetry (LDF), are well-known today. However, in such methods, low-frequency fluctuations (LFFs) in the registered optical signal caused by blood volume changes inside a tissue have not been studied in details until now. The aim of this study is to investigate the LFFs formation and to justify the LFFs-based diagnostic technique for cutaneous BF assessment. LFFs are theoretically described and experimentally shown in the input LDF signal inside the frequency range 0 to 10 Hz. They are substantiated as the basis of the new diagnostic method, in which BF is defined as the magnitude of blood volume changes in a tissue per unit time. The hand-made prototype of the promising diagnostic tool with light emitted diodes is used to validate the technique in experiments in vivo on 16 healthy volunteers in comparison with the LDF method. Experimental results show a good similarity of the recorded BF for both coherent and incoherent method. The proposed technique makes it possible the creation of inexpensive diagnostic equipment for assessment of cutaneous BF without using lasers and coherent light, completely and functionally comparable to LDF devices.  相似文献   

19.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac output (Modelflow), muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAV; transcranial Doppler ultrasound) were measured continuously. The effect of hypoxia on dynamic cerebral autoregulation was assessed with transfer function gain and phase shift in mean BP and MCAV. At rest, hypoxia resulted in increases in ventilation, progressive hypocapnia, and general sympathoexcitation (i.e., elevated HR and cardiac output); these responses were more marked during hypoxic exercise (P < 0.05 vs. rest) and were also reflected in elevation of the slopes of the linear regressions of ventilation, HR, and cardiac output with Sa(O(2)) (P < 0.05 vs. rest). MCAV was maintained during hypoxic exercise, despite marked hypocapnia (44.1 +/- 2.9 to 36.3 +/- 4.2 Torr; P < 0.05). Conversely, hypoxia both at rest and during exercise decreased cerebral oxygenation compared with muscle. The low-frequency phase between MCAV and mean BP was lowered during hypoxic exercise, indicating impairment in cerebral autoregulation. These data indicate that increases in cerebral neurogenic activity and/or sympathoexcitation during hypoxic exercise can potentially outbalance the hypocapnia-induced lowering of MCAV. Despite maintaining MCAV, such hypoxic exercise can potentially compromise cerebral autoregulation and oxygenation.  相似文献   

20.
The cerebral blood flow of newborn lambs at reduced and elevated arterial blood pressures, induced by intravenous infusion of sodium nitroprusside and phenylephrine hydrochloride as well as blood withdrawal and reinfusion, were compared. Both blood withdrawal and sodium nitroprusside infusion reduced mean arterial pressure from 83 to 60 mmHg (1 mmHg = 133 Pa). Reinfusion of blood increased arterial pressure to 94 mmHg. Phenylephrine hydrochloride infusion increased arterial pressure to 102 mmHg. The cerebral blood flows at corresponding arterial pressures were similar (coefficient of correlation = 0.88, P less than 0.01). Cerebral blood flow before and after infusion of phenylephrine hydrochloride and sodium nitroprusside into the brain via the carotid artery did not change. The results indicate that blood-borne phenylephrine hydrochloride and sodium nitroprusside, in concentrations that would alter arterial blood pressure significantly from its resting level, do not change cerebral blood flow directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号