首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the rat, the spleen is a major site of fluid efflux out of the blood. By contrast, the mesenteric vasculature serves as a blood reservoir. We proposed that the compliance and myogenic responses of these vascular beds would reflect their different functional demands. Mesenteric and splenic arterioles ( approximately 150-200 microm) and venules (<250 microm) from rats anesthetized with pentobarbital sodium were mounted in a pressurized myograph. Mesenteric arterial diameter decreased from 146 +/- 6 to 133 +/- 6 microm on raising intraluminal pressures from 80 to 120 mmHg. This response was enhanced in the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME; 139 +/- 6 to 112 +/- 7 microm). There was no such myogenic response in the splenic arterioles, except in the presence of l-NAME (194 +/- 4 to 164 +/- 4.2 microm). We propose that, whereas mesenteric arterioles exhibit myogenic responses, this is normally masked by NO-mediated dilation in the splenic vessels. The mesenteric venules were highly distensible (active, 184 +/- 15 to 320 +/- 30.9 microm; passive in Ca(2+)-free media, 209 +/- 31 to 344 +/- 27 microm; 4-8 mmHg) compared with the splenic vessels (active, 169 +/- 11 to 184 +/- 16 microm; passive, 187 +/- 12 to 207 +/- 17 microm). We conclude that, in response to an increase in perfusion pressure, mesenteric arterial diameter would decrease to limit the changes in flow and microvascular pressure. In addition, mesenteric venous capacitance would increase. By contrast, splenic arterial diameter would increase, while there would be little change in venous diameter. This would enhance the increase in intrasplenic microvascular pressure and increase fluid extravasation.  相似文献   

2.
Increasing the total surface area of the pulmonary blood-gas interface by capillary recruitment is an important factor in maintaining adequate oxygenation when metabolic demands increase. Capillaries are known to be recruited during conditions that raise pulmonary blood flow and pressure. To determine whether pulmonary arterioles and venules are part of the recruitment process, we made in vivo microscopic observations of the subpleural microcirculation (all vessels less than 100 microns) in the upper lung where blood flow is low (zone 2). To evoke recruitment, pulmonary arterial pressure was elevated either by an intravascular fluid load or by airway hypoxia. Of 209 arteriolar segments compared during low and high pulmonary arterial pressures, none recruited or derecruited. Elevated arterial pressure, however, did increase the number of perfused capillary segments by 96% with hypoxia and 165% with fluid load. Recruitment was essentially absent in venules (4 cases of recruitment in 289 segments as pressure was raised). These data support the concept that recruitment in the pulmonary circulation is exclusively a capillary event.  相似文献   

3.
A proposed mechanism for metabolic flow regulation involves the saturation-dependent release of ATP by red blood cells, which triggers an upstream conducted response signal and arteriolar vasodilation. To analyze this mechanism, a theoretical model is used to simulate the variation of oxygen and ATP levels along a flow pathway of seven representative segments, including two vasoactive arteriolar segments. The conducted response signal is defined by integrating the ATP concentration along the vascular pathway, assuming exponential decay of the signal in the upstream direction with a length constant of approximately 1 cm. Arteriolar tone depends on the conducted metabolic signal and on local wall shear stress and wall tension. Arteriolar diameters are calculated based on vascular smooth muscle mechanics. The model predicts that conducted responses stimulated by ATP release in venules and propagated to arterioles can account for increases in perfusion in response to increased oxygen demand that are consistent with experimental findings at low to moderate oxygen consumption rates. Myogenic and shear-dependent responses are found to act in opposition to this mechanism of metabolic flow regulation.  相似文献   

4.
Superior mesenteric arterial (SMA) blood flow was measured in pentobarbital-anesthetized cats using a noncannulating electromagnetic flowprobe. The selective adenosine antagonist 8-phenyltheophylline (8-PT) antagonized the dilator effect of infused adenosine but not isoproterenol. The vasodilation in response to reduced arterial perfusion pressure (autoregulation) was blocked by the adenosine receptor blockade, which also reduced the degree of postocclusive (1 min) hyperemia by one-half to two-thirds. The remainder of the hyperemia may have been due partially to adenosine, since exogenous adenosine still produced a small vasodilation (26%), so effects of endogenous adenosine could also still be expected to exert a small effect. Myogenic effects appear unlikely to be the mechanism of the small remaining hyperemia, since venous pressure increments within physiologically relevant ranges did not cause altered SMA conductance, and arterial dilation in response to large decreases in arterial pressure could be blocked by adenosine antagonism. Portal pressure was increased using hepatic nerve stimulation (8 Hz) to raise pressure from 7.0 to 12.4 mmHg (1 mmHg = 133.3 Pa). The small vasoconstriction seen in the SMA was due to the rise in systemic blood pressure, since prevention of a rise in SMA pressure prevented the response and 8-PT blocked the response (previously shown to block arterial pressure-flow autoregulation). An equal rise in PVP imposed by partial occlusion of the portal vein did not lead to changes in SMA vascular conductance. Thus, we conclude that within physiologically relevant ranges of arterial and portal venous pressure, the SMA does not show myogenic responses of the resistance vessels.  相似文献   

5.
The objectives of this study were to evaluate the myogenic behavior of blood vessels and their interaction within the coronary arterial tree and to evaluate the possible role of the myogenic response in autoregulation. The model consists of 10 compartments in series, each representing a class of vessel sizes. Diameter and resistance in each class are determined by their value at full dilation (d(p,) R(p)) and by the myogenic response. Three distributions of R(p) and three distributions of myogenic strength, M(i) (slope of pressure-diameter curve, range -0.05 to -0.4%/mmHg) were evaluated (9 cases). It was found that larger vessels attenuate the myogenic activity of smaller vessels and that myogenic responsiveness is sufficient to achieve autoregulation. When M(i) has a maximum in vessels of 84 microm, the maximum effect of perfusion pressure on active diameter occurs in vessels between 123 and 181 microm, depending on the distribution of R(p). Distribution of resistance and control mechanisms in the coronary arterial tree are important for interpretation of individual vessel responses as observed in vivo.  相似文献   

6.
Organ perfusion is regulated by vasoactivity and structural adaptation of small arteries and arterioles. These resistance vessels are sensitive to pressure, flow and a range of vasoactive stimuli. Several strongly interacting control loops exist. As an example, the myogenic response to a change of pressure influences the endothelial shear stress, thereby altering the contribution of shear-dependent dilation to the vascular tone. In addition, acute responses change the stimulus for structural adaptation and vice versa. Such control loops are able to maintain resistance vessels in a functional and stable state, characterized by regulated wall stress, shear stress, matched active and passive biomechanics and presence of vascular reserve. In this modeling study, four adaptation processes are identified that together with biomechanical properties effectuate such integrated regulation: control of tone, smooth muscle cell length adaptation, eutrophic matrix rearrangement and trophic responses. Their combined action maintains arteries in their optimal state, ready to cope with new challenges, allowing continuous long-term vasoregulation. The exclusion of any of these processes results in a poorly regulated state and in some cases instability of vascular structure.  相似文献   

7.
Patterns of flow were recorded from individual capillaries of mesentery and muscle during autoregulation and reactive hyperemia. In cat mesentery at normal arterial pressure capillary blood flow was often periodic in nature. When arterial pressure was reduced periodicity was abolished and in certain cases mean flow increased. Elevation of venous pressure at this time caused restoration of flow periodicity and simultaneously a large fall in mean flow. Vasomotion and autoregulation in mesentery appear to be dependent on intravascular pressure per se. In cat sartorius muscle substantial increase in flow was seen in most capillaries during reactive hyperemia. In certain capillaries the pattern resembled the gross flow pattern while others showed a brief hyperemia and then a period of flow arrest that is presumably due to a strong precapillary vasoconstriction. The latter response is suggestive of a myogenic control while the former may be due to accumulation of metabolites. In frog pectoralis muscle reactive hyperemia was very prolonged in comparison to cat sartorius muscle. The general pattern of flow was consistent with the notion of a strong metabolic control mechanism. The three tissues studied provide examples of strong myogenic, strong metabolic, and combined metabolic and myogenic control of the microcirculation.  相似文献   

8.
Impaired cerebral blood flow autoregulation is seen in uremic hypertension, whereas in nonuremic hypertension autoregulation is shifted toward higher perfusion pressure. The cerebral artery constricts in response to a rise in either lumen pressure or flow; we examined these responses in isolated middle cerebral artery segments from uremic Wistar-Kyoto rats (WKYU), normotensive control rats (WKYC), and spontaneously hypertensive rats (SHR). Pressure-induced (myogenic) constriction developed at 100 mmHg; lumen flow was then increased in steps from 0 to 98 microl/min. Some vessels were studied after endothelium ablation. Myogenic constriction was significantly lower in WKYU (28 +/- 2.9%) compared with both WKYC (39 +/- 2.5%, P = 0.035) and SHR (40 +/- 3.1%, P = 0.018). Flow caused constriction of arteries from all groups in an endothelium-independent manner. The response to flow was similar in WKYU and WKYC, whereas SHR displayed increased constriction compared with WKYU (P < 0.001) and WKYC (P < 0.001). We conclude that cerebral myogenic constriction is decreased in WKYU, whereas flow-induced constriction is enhanced in SHR.  相似文献   

9.
Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors varies over time, from tissue to tissue, and among vessel generations.  相似文献   

10.
To investigate the effect of alveolar hypoxia onthe pulmonary blood flow-segmental vascular resistance relationship, wedetermined the longitudinal distribution of vascular resistance whileincreasing blood flow during hyperoxia or hypoxia in perfused catlungs. We measured microvascular pressures by the micropipetteservo-null method, partitioned the pulmonary vessels into threesegments [i.e., arterial (from main pulmonary artery to 30- to50-µm arterioles), venous (from 30- to 50-µm venules to leftatrium), and microvascular (between arterioles and venules)segments] and calculated segmental vascular resistance. Duringhyperoxia, total resistance decreased with increased blood flow becauseof a reduction of microvascular resistance. In contrast, duringhypoxia, not only microvascular resistance but also arterial resistancedecreased with increase of blood flow while venous resistance remainedunchanged. The reduction of arterial resistance was presumably causedby arterial distension induced by an elevated arterial pressure duringhypoxia. We conclude that, during hypoxia, both microvessels andarteries >50 µm in diameter play a role in preventing furtherincreases in total pulmonary vascular resistance with increased bloodflow.

  相似文献   

11.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

12.
Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation. To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types of control mechanisms are included: 1) autonomic regulation mediated by sympathetic and parasympathetic responses, which affect heart rate, cardiac contractility, resistance, and compliance, and 2) autoregulation mediated by responses to local changes in myogenic tone, metabolic demand, and CO(2) concentration, which affect cerebrovascular resistance. Finally, we formulate an inverse least-squares problem to estimate parameters and demonstrate that our mathematical model is in agreement with physiological data from a young subject during postural change from sitting to standing.  相似文献   

13.
Myogenic behavior, prevalent in resistance arteries and arterioles, involves arterial constriction in response to intravascular pressure. This process is often studied in vitro by using cannulated, pressurized arterial segments from different regional circulations. We propose a comprehensive model for myogenicity that consists of three interrelated but dissociable phases: 1) the initial development of myogenic tone (MT), 2) myogenic reactivity to subsequent changes in pressure (MR), and 3) forced dilatation at high transmural pressures (FD). The three phases span the physiological range of transmural pressures (e.g., MT, 40-60 mmHg; MR, 60-140 mmHg; FD, >140 mmHg in cerebral arteries) and are characterized by distinct changes in cytosolic calcium ([Ca(2+)](i)), which do not parallel arterial diameter or wall tension, and therefore suggest the existence of additional regulatory mechanisms. Specifically, the development of MT is accompanied by a substantial (200%) elevation in [Ca(2+)](i) and a reduction in lumen diameter and wall tension, whereas MR is associated with relatively small [Ca(2+)](i) increments (<20% over the entire pressure range) despite considerable increases in wall tension and force production but little or no change in diameter. FD is characterized by a significant additional elevation in [Ca(2+)](i) (>50%), complete loss of force production, and a rapid increase in wall tension. The utility of this model is that it provides a framework for comparing myogenic behavior of vessels of different size and anatomic origin and for investigating the underlying cellular mechanisms that govern vascular smooth muscle mechanotransduction and contribute to the regulation of peripheral resistance.  相似文献   

14.
Historically, functional hyperemia has been viewed largely as an interaction between a parenchymal cell and its associated microvasculature. Locally released metabolites have been thought to produce relaxation of the smooth muscle and a vasodilation that increases blood flow in proportion to metabolic need. This symposium report presents evidence from a variety of disciplines and a number of different types of biological preparations that demonstrates that functional hyperemia is a complex process involving several classes of microvessels including capillaries, arterioles, and small arteries. These vessels do not function independently but are coordinated by a complex set of interrelations involving at least three different modes of interaction between parenchymal cells and the various segments of the vascular bed. These are local metabolic effects, propagated effects extending over long segments of the vasculature, and flow-dependent vasodilation induced by local changes in blood flow. In addition to these acute responses to metabolic demand it appears that tissues may be capable of more long-term structural alterations of the arterial and arteriolar network in response to sustained changes in the relationship between supply and demand. The vascular bed appears to be able to adapt either by increasing the maximal anatomic diameter of the large arteries or by inserting new arterioles into the parenchyma. Thus, classical functional hyperemia appears to be but one manifestation of a multifaceted process leading to highly coordinated responses of many vascular elements, resulting finally in vascular patterns that are optimized to meet parenchymal cell demands.  相似文献   

15.
The cytochrome P-450 4A (CYP4A)-derived arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) affects renal tubular and vascular functions and has been implicated in the control of arterial pressure. We examined the effect of antisense oligonucleotide (ODN) to CYP4A1, the low K(m) arachidonic acid omega-hydroxylating isoform, on vascular 20-HETE synthesis, vascular reactivity, and blood pressure in the spontaneously hypertensive rat (SHR). Administration of CYP4A1 antisense ODN decreased mean arterial blood pressure from 137 +/- 3 to 121 +/- 4 mmHg (P < 0.05) after 5 days of treatment, whereas treatment with scrambled antisense ODN had no effect. Treatment with CYP4A1 antisense ODN reduced the level of CYP4A-immunoreactive proteins along with 20-HETE synthesis in mesenteric arterial vessels. Mesenteric arteries from rats treated with antisense ODN exhibited decreased sensitivity to the constrictor action of phenylephrine (EC(50) 0.69 +/- 0.17 vs. 1.77 +/- 0.40 microM). Likewise, mesenteric arterioles from antisense ODN-treated rats revealed attenuation of myogenic constrictor responses to increases of transmural pressure. The decreased vascular reactivity and myogenic responses were reversible with the addition of 20-HETE. These data suggest that CYP4A1-derived 20-HETE facilitates myogenic constrictor responses in the mesenteric microcirculation and contributes to pressor mechanisms in SHR.  相似文献   

16.
The objective of this study is to compare the effectiveness of metabolic signals derived from erythrocytes and derived from the vessel wall for regulating blood flow in heterogeneous microvascular networks. A theoretical model is used to simulate blood flow, mass transport, and vascular responses. The model accounts for myogenic, shear-dependent, and metabolic flow regulation. Metabolic signals are assumed to be propagated upstream along vessel walls via a conducted response. Arteriolar tone is assumed to depend on the conducted metabolic signal as well as local wall shear stress and wall tension, and arteriolar diameters are calculated based on vascular smooth muscle mechanics. The model shows that under certain conditions metabolic regulation based on wall-derived signals can be more effective in matching perfusion to local oxygen demand relative to regulation based on erythrocyte-derived signals, resulting in higher extraction and lower oxygen deficit. The lower effectiveness of the erythrocyte-derived signal is shown to result in part from the unequal partition of hematocrit at diverging bifurcations, such that low-flow vessels tend to receive a reduced hematocrit and thereby experience a reduced erythrocyte-derived metabolic signal. The model simulations predict that metabolic signals independent of erythrocytes may play an important role in local metabolic regulation of vascular tone and flow distribution in heterogeneous microvessel networks.  相似文献   

17.
To determine whether microvessels in resting or contracting skeletal muscle constrict during baroreceptor activation, vascular diameters were measured in the spinotrapezius muscle of adult rats (n = 12) during occlusion of the common carotid arteries. Neural and myogenic components were distinguished using two types of occlusion: 1) "normal" (arterial pressure was allowed to increase with baroreceptor activation) and 2) "isobaric" (arterial pressure was maintained constant by decreasing blood volume). During normal occlusions, intermediate and small arteriolar diameters decreased in resting and contracting muscle (10-15% and 25-30%, respectively). Large arterioles and all-sized venules distended slightly (approximately 5%) in resting muscle, but diameters were maintained or decreased in contracting muscle. When arterial pressure was maintained constant (isobaric), the microvascular responses to baroreceptor activation in both resting and contracting muscle were essentially eliminated. We conclude that nearly all the arteriolar constriction observed in the spinotrapezius muscle during normal carotid artery occlusion is myogenic in origin, secondary to increased arterial pressure. This pressure-dependent constriction is augmented during skeletal muscle contraction and functional vasodilation.  相似文献   

18.
In order to establish a quantitative model of blood flow in skeletal muscle, the mechanical properties of the blood vessels need to be measured. We present measurements of the viscoelastic properties of arterioles, venules, and capillaries in exteriorized rat spinotrapezius muscle. Muscles were perfused with an inert silicone polymer and a uniform static pressure was established by occlusion of the venous outflow. Vessel diameters were then measured as a function of the static pressure. This study provides the first measurements of the viscoelastic properties of microvessels in skeletal muscle in situ. Over a pressure range of 20-200 mmHg, the transverse arterioles are the most distensible vessels, while the arcade venules are the stiffest. In response to a step change in pressure, all vessels show an initial elastic deformation, followed by a nonlinear creep. Based on the experimental results for different pressure histories a constitutive equation relating vessel diameter to the local transmural pressure is proposed. Diameter changes are expressed in the form of a diameter strain, analogous to a Green's strain, and are related to the local transmural pressure using a standard linear solid model. This model has only three empirical coefficients and could be fitted to all experimental results for all vessels within error of measurement.  相似文献   

19.
The present study investigated the role of protein tyrosine phosphorylation in myogenic responsiveness of rat skeletal muscle arterioles. Arteriolar segments were cannulated and pressurized without intraluminal flow. All vessels studied developed spontaneous tone and demonstrated significant myogenic constriction to step changes in pressure with a resultant increase in myogenic tone over an intraluminal pressure range of 50-150 mmHg. Step increases in intraluminal pressure from 50 to 120 mmHg caused a rapid and sustained elevation in intracellular [Ca(2+)], as measured using fura 2. Vessels with myogenic tone dilated in response to tyrosine kinase inhibitors genistein (10 or 30 microM) and tyrphostin A47 (10 or 30 microM) and constricted to the tyrosine phosphatase inhibitor pervanadate (1 or 10 microM). Despite the dilator effect, myogenic reactivity was not blocked by the inhibitors. Daidzein (10 microM), a compound structurally similar to genistein but without tyrosine kinase-inhibiting activity, did not alter vessel tone or myogenic responses. Preincubation of arterioles with genistein or tyrphostin A47 did not significantly alter baseline arteriolar [Ca(2+)], and neither drug reduced the increase in [Ca(2+)] following an acute increase in intraluminal pressure. Constriction induced by pervanadate (10 microM) was not accompanied by a significant increase in intracellular [Ca(2+)], even though removal of extracellular Ca(2+) reversed the constriction. Examination of smooth muscle tyrosine phosphorylation, using a fluorescent phosphotyrosine antibody and confocal microscopy, showed that increased intraluminal pressure resulted in an increase in anti-phosphotyrosine fluorescence. Because manipulation of tyrosine kinase activity was found to alter vessel diameter, these data support a role for tyrosine phosphorylation in modulation of arteriolar tone. However, the results indicate that acute arteriolar myogenic constriction does not require tyrosine phosphorylation.  相似文献   

20.
We tested the hypothesis that constriction of cerebral arterioles during acute increases in blood pressure is attenuated by activation of potassium (K(+)) channels. We tested the effects of inhibitors of calcium-dependent K(+) channels [iberiotoxin (50 nM) and tetraethylammonium (TEA, 1 mM)] on changes in arteriolar diameter during acute hypertension. Diameter of cerebral arterioles (baseline diameter = 46 +/- 2 microm, mean +/- SE) was measured using a cranial window in anesthetized rats. Arterial pressure was increased from a control value of 96 +/- 1 mmHg to 130, 150, 170, and 200 mmHg by intravenous infusion of phenylephrine. Increases in arterial pressure from baseline to 130 and 150 mmHg decreased the diameter of cerebral arterioles by 5-10%. Greater increases in arterial pressure produced large increases in arteriolar diameter (i.e., "breakthrough of autoregulation"). Iberiotoxin or TEA inhibited increases in arteriolar diameter when arterial pressure was increased to 170 and 200 mmHg. The change in arteriolar diameter at 200 mmHg was 20 +/- 3% and -1 +/- 4% in the absence and presence of iberiotoxin, respectively. These findings suggest that calcium-dependent K(+) channels attenuate cerebral microvascular constriction during acute increases in arterial pressure, and that increases in arteriolar diameter at high levels of arterial pressure are not simply a passive phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号