首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The role of IFN-gamma in the pathology of experimental endotoxemia   总被引:21,自引:0,他引:21  
Proinflammatory cytokines provoked by circulating bacterial LPS mediate many of the destructive host responses characteristic of septic shock. To determine if the lymphokine IFN-gamma has a similar pathogenic role during endotoxic shock, mice were pretreated with murine rIFN-gamma (rMuIFN-gamma) at various times relative to challenge with Salmonella enteritidis LPS. Subsequent mortality was increased when rMuIFN-gamma was administered before or up to 4 h after endotoxin challenge. Pretreatment with rMuIFN-gamma resulted in nearly fivefold increases in serum TNF during endotoxemia, but TNF levels were unaffected by IFN administered after endotoxin. The increased levels of serum TNF probably reflected enhanced translation of this factor, as tissue expression of TNF mRNA did not increase correspondingly in IFN-pretreated mice. To examine the role of IFN-gamma produced endogenously during endotoxemia, mice were pretreated with 0.5 mg of anti-IFN-gamma mAb before endotoxin injection. This treatment significantly reduced mortality from endotoxic shock but caused only minor decreases in serum TNF. Anti-IFN-gamma administered 2 h after endotoxin was similarly protective. These results demonstrate a significant role for IFN-gamma in the pathology of septic shock, both indirectly as an activator of monokines known to promote lethality and possibly by other, late-acting mechanisms.  相似文献   

2.
Patients with high level of serum endotoxin did not necessarily develop into lethal shock, whereas some patients died of septic shock even when their serum endotoxin levels were low. These results indicate that limiting factor which determines the host to be endotoxin shock principally depends on the host susceptibility to endotoxin instead of serum endotoxin level. To understand this susceptible status of the host to endotoxin, we used Propionibacterium acnes primed mouse endotoxin shock model. We found that P. acnes-primed mice responded to low dose of LPS by enhanced production of IL-1 and TNF. And such mice were highly susceptible to the lethal shock inducing effect of IL-1 and/or TNF, which also induced high level of serum IL-6 in these mice. Therefore, measurement of serum IL-6 level provides us with the information of the preceding exposure of the host to either LPS or IL-1 and/or TNF and the highly susceptible status of the host to these stimuli. Based on these results obtained from animal model, we investigated the relationship between serum IL-6 levels and serum endotoxin levels in the patients with malignant hematologic disorders. We found that these patients fell into two groups; an endotoxin susceptible group, equivalent to P. acnes-primed mice, showing high level of serum IL-6 with low level of serum endotoxin, and a nonendotoxin susceptible group, equivalent to P. acnes-nonprimed mice, showing low or undetectable level of serum IL-6 with high level of serum endotoxin. We propose that the measurement of serum IL-6 level in the patients positive for endotoxin is a useful tool in evaluating diagnosis and prognosis of endotoxin shock.  相似文献   

3.
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.  相似文献   

4.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

5.
The development of LPS tolerance has been suggested to be mediated by an inhibition of cytokine synthesis. Here we have studied serum IL-6 and TNF levels in mice after LPS administration. Repeated administration of LPS (35 micrograms daily for 4 days) to mice induced a refractoriness (tolerance) to subsequent administrations of LPS in terms of induction of circulating IL-6 and TNF. To investigate the mechanism by which LPS down-regulates its own induction of cytokine synthesis and the relationship between IL-6 and TNF production, we attempted to revert the inhibition of IL-6 and TNF production using agents like PMA or IFN-gamma, previously reported to activate macrophage production of cytokines. Pretreatment with PMA (4 micrograms, 10 min before LPS) partially restored IL-6 production in LPS-tolerant mice given 2 micrograms LPS. On the other hand, PMA did not restore TNF induction in LPS-tolerant mice, even when administered with high doses of LPS (up to 200 micrograms). A similar reversal of LPS resistance to IL-6, but not TNF, induction by PMA was observed in genetically LPS-resistant C3H/HeJ mice. IFN-gamma also restored, although to a lesser extent than PMA, IL-6 production. However, unlike PMA, IFN-gamma could also partially restore TNF production in LPS-tolerant mice, although only when LPS was administered at high doses. By contrast with PMA, IFN-gamma was clearly more active in restoring TNF synthesis than that of IL-6. Similar results were obtained in genetically LPS-unresponsive C3H/HeJ mice. These data suggest that different mechanisms are implicated in the inhibition of IL-6 and TNF synthesis in LPS-tolerant mice and that part of this inhibition can be overcome by PMA or IFN-gamma.  相似文献   

6.
Current evidence indicates that endogenously produced peptide cytokines, most notably TNF-alpha and IL-1, mediate the lethality of experimental endotoxemia. Because circulating serum levels of IFN-gamma can be detected soon after TNF-alpha and IL-1 in response to endotoxin, we investigated the role of IFN-gamma in endotoxin and TNF-alpha lethality. Specific neutralizing antibodies to murine TNF-alpha (anti-TNF-alpha Ab) or murine IFN gamma (anti-IFN-gamma Ab) produced in our laboratory protected mice against the lethality of Escherichia coli endotoxin (LPS) administered 6 h later. Serum IFN-gamma levels 2 h after i.v. LPS were lower in mice treated with anti-TNF-alpha Ab compared to mice that received nonimmune IgG (median less than 2.5 vs 3.0 U/ml, P2 less than 0.05). In contrast, serum TNF-alpha levels 1 h after i.v. LPS peaked more than fourfold higher in mice treated with anti-IFN-gamma Ab compared to controls (median greater than 6400 vs 1405 pg/ml, p2 less than 0.05). Doses of TNF-alpha (300 micrograms/kg) and IFN-gamma (50,000 U) which were well tolerated when given individually were synergistically lethal in combination (0% lethality vs 100% lethality, P2 less than 0.001), and were associated with higher serum levels of IL-6 than with either cytokine alone. Anti-IFN-gamma Ab provided complete protection against exogenous human rTNF-alpha at the LD100 dose (1400 micrograms/kg, p2 less than 0.001), and in fact prevented lethality at doses four- to fivefold greater than the LD100 human rTNF-alpha (up to 6000 micrograms/kg). We conclude that IFN-gamma is synergistic with TNF-alpha, is essential for the lethality of LPS and TNF-alpha, and may have modulating effects on the negative control of serum levels of TNF-alpha after LPS in mice.  相似文献   

7.
Necrotizing enterocolitis (NEC) is an emergency of the newborn that often requires surgery. Growth factors from stem cells may aid in decreasing intestinal damage while also promoting restitution. We hypothesized that 1) TNF, LPS, or hypoxia would alter bone marrow mesenchymal stem cell (BMSC) TNF, IGF-1, IL-6, and VEGF production, and 2) TNF receptor type 1 (TNFR1) or type 2 (TNFR2) ablation would result in changes to the patterns of cytokines and growth factors produced. BMSCs were harvested from female wild-type (WT), TNFR1 knockout (KO), and TNFR2KO mice. Cells were stimulated with TNF, LPS, or hypoxia. After 24 h, cell supernatants were assayed via ELISA. Production of TNF and IGF-1 was decreased in both knockouts compared with WT regardless of the stimulus utilized, whereas IL-6 and VEGF levels appeared to be cooperatively regulated by both the activated TNF receptor and the initial stimulus. IL-6 was increased compared with WT in both knockouts following TNF stimulation but was significantly decreased with LPS. Compared with WT, hypoxia increased IL-6 in TNFR1KO but not TNFR2KO cells. TNF stimulation decreased VEGF in TNFR2KO cells, whereas TNFR1 ablation resulted in no change in VEGF compared with WT. TNFR1 ablation resulted in a decrease in VEGF following LPS stimulation compared with WT; no change was noted in TNFR2KO cells. With hypoxia, TNFR1KO cells expressed more VEGF compared with WT, whereas no difference was noted between WT and TNFR2KO cells. TNF receptor ablation modifies BMSC cytokine production. Identifying the proper stimulus and signaling cascades for the production of desired growth factors may be beneficial in maximizing the therapeutic potential of stem cells.  相似文献   

8.
Viral infections in humans or mice can result in increased sensitivity to challenges with bacteria, bacterial products, or cytokine administration. During lymphocytic choriomeningitis virus infections, mice are more sensitive to the lethal effects of bacterial endotoxin LPS, and in the experiments reported here, were observed at up to 10-fold lower doses in infected than in uninfected mice. The mechanisms responsible for heightened susceptibility under these conditions were evaluated. Kinetic studies demonstrated that virus-infected mice had 3- to 50-fold increases over uninfected mice in peak serum TNF, IL-12, and IFN-gamma levels after LPS administration. All three cytokines contributed to lethality during dual challenge, because neutralization of any one of the factors protected from death. Production of TNF was not dependent on either NK or T cells. In contrast, these populations were the predominant sources of IFN-gamma, as determined by lack of detectable IFN-gamma production in NK and T cell-deficient mice and by intracellular cytokine expression in the cell subsets. Concordant with the demonstrations that both cell populations produced IFN-gamma and that this factor was critical for lethality, removal of either subset alone was not sufficient to protect mice from death resulting from dual challenges. Increased resistance required absence of both cell subsets. Taken together, the data show that during viral infections, the normally protective immune responses can profoundly modify reactions to secondary heterologous challenges, to result in dysregulated cytokine expression and consequent heightened detrimental effects.  相似文献   

9.
The effect of L-carnitine and some of its acyl derivatives on serum TNF production and lethality in a murine experimental endotoxin shock model was investigated. In some instances, serum IL-6 production was also evaluated. In this experimental model, C57BL/6 mice received 30 mg/kg LPS (E. cell 055:B5) injected intraperitoneally, while L-carnitine and its derivatives were administered according to different schedules. Serum levels of TNF and IL-6 were evaluated 1 h following LPS injection. The treated animals were also monitored daily for differences in body temperature, feeding, and survival for 10 days after LPS injection. Although some derivatives were able to significantly affect TNF production, the marked decrease in serum TNF levels of LPS-treated mice was not paralleled by a substantial increase in survival.  相似文献   

10.
Mice exposed to sublethal endotoxemia develop short-term endotoxin tolerance, a state characterized by decreased monokine production and enhanced protection against endotoxic lethality. We confirmed that TNF-alpha production is markedly impaired in endotoxin-tolerant mice and additionally found 2- to 6-fold decreases in serum IFN-gamma in these animals following endotoxin challenge. The IFN-gamma deficiency of endotoxin tolerance correlated with 8-fold decreases in the bioactive p40/p35 heterodimeric form of IL-12. In contrast, total circulating IL-12 p40 was reduced by only 30-50%. Endotoxin-tolerant mice were less responsive to IL-12 than control mice, as evidenced by 3-fold lower levels of IFN-gamma inducible in vivo when rIL-12 was administered at the time of endotoxin challenge. Similarly, spleen cell cultures of endotoxin-tolerant mice produced 3-fold less IFN-gamma in the presence of optimal concentrations of both IL-12 and IL-18. Finally, levels of IL-12R beta 2 subunit mRNA and the percent composition of NK lymphocytes in the spleen were both decreased in endotoxin-tolerant mice relative to controls. We conclude that endotoxin-tolerant mice are profoundly impaired in their ability to produce IFN-gamma in response to endotoxin and that this is associated with acquired defects in both the production of circulating IL-12 heterodimer response and the response to IL-12 by NK cells.  相似文献   

11.
In addition to stimulating IFN-gamma synthesis, IL-18 also possesses inflammatory effects by inducing synthesis of the proinflammatory cytokines TNF and IL-1beta and the chemokines IL-8 and macrophage inflammatory protein-1alpha. We hypothesized that neutralization of IL-18 would have a beneficial effect in lethal endotoxemia in mice. IL-1beta converting enzyme (ICE)-deficient mice, lacking the ability to process mature IL-18 and IL-1beta, were completely resistant to lethal endotoxemia induced by LPS derived from either Escherichia coli or Salmonella typhimurium. In contrast, both wild-type and IL-1beta-/- mice were equally susceptible to the lethal effects of LPS, implicating that absence of mature IL-18 or IFN-gamma but not IL-1beta in ICE-/- mice is responsible for this resistance. However, IFN-gamma-deficient mice were not resistant to S. typhimurium LPS, suggesting an IFN-gamma-independent role for IL-18. Anti-IL-18 Abs protected mice against a lethal injection of either LPS. Anti-IL-18 treatment also reduced neutrophil accumulation in liver and lungs. The increased survival was accompanied by decreased levels of IFN-gamma and macrophage inflammatory protein-2 in anti-IL-18-treated animals challenged with E. coli LPS, whereas IFN-gamma and TNF concentrations were decreased in treated mice challenged with S. typhimurium. In conclusion, neutralization of IL-18 during lethal endotoxemia protects mice against lethal effects of LPS. This protection is partly mediated through inhibition of IFN-gamma production, but mechanisms involving decreased neutrophil-mediated tissue damage due to the reduction of either chemokines (E. coli LPS) or TNF (S. typhimurium LPS) synthesis by anti-IL-18 treatment may also be involved.  相似文献   

12.
Right and left ventricular myocytes originate from different cellular progenitors; however, it is unknown whether these cells differ in their response to endotoxemia. We hypothesized that 1) the percentage of endotoxemic functional depression within the right ventricle (RV) would be smaller than that of the left ventricle; and 2) that better RV function would correlate with lower levels of right ventricular TNF production. Adult Sprague-Dawley rats were divided into right and left control and endotoxin groups. Controls received vehicle, while endotoxin groups received LPS at 20 mg/kg ip. Hearts were excised either 2 or 6 h after injection. Hearts excised at 2 h were assayed for TNF, IL-6, TNF receptor 1 (TNFR1), TNFR2, and via ELISA, while hearts excised at 6 h were assayed via the Langendorff model. The percentage of cardiac functional depression, exhibited as developed pressure, contractility, and rate of relaxation (expressed as a percentage of control) was significantly smaller in right ventricles compared with left ventricles following endotoxin exposure. Tissue levels of TNF were significantly elevated in both right and left ventricles 2 h after endotoxin exposure, and right ventricular endotoxin groups expressed higher levels of TNF compared with their left ventricular counterparts. No significant differences in IL-6, TNFR1, or TNFR2 levels were noted between endotoxin-exposed ventricles. This is the first study to demonstrate that right and left ventricular function differs after endotoxin exposure.  相似文献   

13.
Elevated NO production mediated by activation of the enzyme iNOS is thought to play a central role in the development of tissue damage observed during septic shock. IFN-gamma, TNF-alpha and IL-10 have been shown to be involved in the regulation of LPS-induced serum levels of the NO-oxidation products nitrate and nitrite. Therefore, in the present study, we investigated the role of endogenous IFN-gamma, TNF-alpha and IL-10 in the regulation of LPS-induced tissue iNOS expression in the major organs. To this end, mice were pre-treated with anti-IFN-gamma, anti-TNF-alpha, anti-IL-10 monoclonal antibodies, or combinations of these, two hours before intraperitoneal LPS-challenge. Immunohistochemical staining for iNOS and determination of iNOS activity indicated that iNOS expression was mainly upregulated in the small intestine, lung and heart, and that IFN-gamma, TNF-alpha as well as IL-10 are involved in the regulation of iNOS expression and enzyme activity. Whereas blocking either IFN-gamma or TNF-alpha did not affect iNOS expression, iNOS enzymatic activity seems to be inhibited. In contrast, blocking both mediators nearly completely prevents iNOS expression after LPS challenge, suggesting that the presence of either IFN-gamma or TNF-alpha is essential for LPS-induced iNOS expression in these organs. Combined treatment of these monoclonal antibodies revealed that whereas on the one hand IL-10 inhibits LPS-induced iNOS expression, on the other hand IL-10 or an IL-10 inducible factor is also involved in the upregulation of iNOS expression after LPS challenge.  相似文献   

14.
TNF is a major mediator in the pathogenesis of endotoxic shock, and its inhibition has a protective effect in various animal models of sepsis or endotoxin (lipopolysaccharide, LPS) toxicity. LPS treatment also induces an oxidative damage mediated by increased production of reactive oxygen intermediates. N-Acetylcysteine (NAC) is an antioxidant and a precursor of the synthesis of glutathione (GSH) and was reported to protect against LPS toxicity and LPS-induced pulmonary edema. In this study we investigated the effect of NAC on TNF production and LPS lethality in mice. The results indicated that oral administration of NAC protects against LPS toxicity and inhibits the increase in serum TNF levels in LPS-treated mice. The inhibition was not confined to the released form of TNF, since NAC also inhibited LPS-induced spleen-associated TNF. On the other hand, the inhibitor of GSH synthesis, DL-buthionine-(SR)-sulfoximine (BSO), had the opposite effect of potentiating LPS-induced TNF production, and this was associated with a decrease in liver GSH levels. Repletion of liver GSH with NAC reversed this effect. NAC was also active in inhibiting TNF production and hepatotoxicity in mice treated with LPS in association with a sensitizing dose of Actinomycin D. These data indicate that GSH can be an endogenous modulator of TNF production in vivo. On the other hand, NAC pretreatment did not inhibit other effects of LPS, particularly induction of serum IL-6, spleen IL-1 alpha, and corticosterone, in the same experimental model, suggesting that the observed effect could be specific for TNF.  相似文献   

15.
Hosts after severe burn injury are known to have a defect in the Th1 immune response and are susceptible to bacterial infections. We herein show that liver NK cells are potent IFN-gamma producers early after burn injury. However, when mice were injected with LPS 24 h after burn injury, IFN-gamma production from liver mononuclear cells (MNC; which we previously showed to be NK cells) was suppressed, and the serum IFN-gamma concentration did not increase, while serum IL-10 conversely increased compared with control mice. Interestingly, a single injection of IL-18 simultaneously with LPS greatly restored the serum IFN-gamma concentration in mice with burn injury and also increased IFN-gamma production from liver MNC. Nevertheless, a single IL-18 injection into mice simultaneously with LPS was no longer effective in the restoration of serum IFN-gamma and IFN-gamma production from the liver MNC at 7 days after burn injury, when mice were considered to be the most immunocompromised. However, IL-18 injections into mice on alternate days beginning 1 day after burn injury strongly up-regulated LPS-induced serum IFN-gamma levels and IFN-gamma production from liver and spleen MNC of mice 7 days after burn injury and down-regulated serum IL-10. Furthermore, similar IL-18 therapy up-regulated serum IFN-gamma levels in mice with experimental bacterial peritonitis 7 days after burn injury and greatly decreased mouse mortality. Thus, IL-18 therapy restores the Th1 response and may decrease the susceptibility to bacterial infection in mice with burn injury.  相似文献   

16.
NC/Nga (NC) mice raised under conventional conditions (Conv. NC mice) spontaneously develop dermatitis similar to human atopic dermatitis, whereas NC mice raised under the specific pathogen-free conditions do not develop dermatitis. In the present study, we show that the representative Th1 cytokine, IFN-gamma levels in the sera of NC mice, injected with either staphylococcal enterotoxin B or endotoxin (LPS), to be severalfold lower than those of normal mice. The low IFN-gamma response to staphylococcal enterotoxin B was correlated to the lack of regular Vbeta8(+) T cells and Vbeta8(+) NK T cells, and the low IFN-gamma response to LPS was correlated to an impaired IL-18 production of macrophages. The CD3-stimulated IL-4 production from liver and spleen T cells from Conv. NC mice in vitro was greatly augmented. The serum IL-4 levels of untreated Conv. NC mice also were higher than those of normal mice and specific pathogen-free NC mice. Treatment of Conv. NC mice either with IFN-gamma, IL-12, or IL-18 twice a week from 4 wk of age substantially inhibited the elevation of the serum IgE levels, serum IL-4 levels, and dermatitis, and IL-12 or IL-18 treatment also reduced the in vitro IL-4 production from CD3-stimulated liver T cells. The systemic deficiency in the Th1 response to bacterial stimulation thus leads to a Th2-dominant state and may induce an abnormal cellular immune response in the skin accompanied with an overproduction of IgE and a susceptibility to dermatitis in NC mice.  相似文献   

17.
Lipopolysaccharide (LPS)-induced effects on energy balance are characterized by alterations in energy expenditure (hypermetabolism) and food intake (anorexia). To study the role of tumour necrosis factor alpha (TNF-alpha) on some of these metabolic responses to endotoxin, we have used transgenic mice expressing soluble tumour necrosis factor receptor-1 IgG fusion protein (TNFR1-IgG) as well as TNF-alpha knockout (KO), lymphotoxin-alpha (LT-alpha) KO, and interferon-gamma receptor (IFN-gamma R) KO mice. The results from TNFR1-IgG transgenic mice suggest that the hypermetabolic and anorectic responses induced by LPS are independently regulated since, in the absence of TNF-alpha or LT-alpha, the LPS-induced hypermetabolism is almost prevented but not the anorexia. The anorectic response shows the strongest association with IFN-gamma since both IFN-gamma R KO mice and mice treated with anti-IFN-gamma antibody showed marked reduction in the LPS-induced anorexia compared to other mice. IFN-gamma R KO mice also have an attenuated thermogenic response to endotoxin. Anti-Asialo GM1 antibody treatment attenuated both the hypermetabolic and anorectic responses to LPS, to an extent comparable to that observed in IFN-gamma R KO mice. This finding suggests that natural killer cells (lymphocytic subsets) may be involved in IFN-gamma production and play an important role in the metabolic alterations induced by LPS. We also showed that the hypermetabolic response of control mice is associated with an upregulation of cytokine expression within the brain and an increase in permeability of the blood brain barrier. LPS-induced anorexia appears to involve peripheral cytokine expression.  相似文献   

18.
Tumor necrosis factor-alpha (TNF) is implicated as an important proinflammatory cytokine in asthma. We evaluated mice deficient in TNF receptor 1 (TNFR1) and TNFR2 [TNFR(-/-) mice] in a murine model of allergic inflammation and found that TNFR(-/-) mice had comparable or accentuated responses compared with wild-type [TNFR(+/+)] mice. The responses were consistent among multiple end points. Airway responsiveness after methacholine challenge and bronchoalveolar lavage (BAL) fluid leukocyte and eosinophil numbers in TNFR(-/-) mice were equivalent or greater than those observed in TNFR(+/+) mice. Likewise, serum and BAL fluid IgE; lung interleukin (IL)-2, IL-4, and IL-5 levels; and lung histological lesion scores were comparable or greater in TNFR(-/-) mice compared with those in TNFR(+/+) mice. TNFR(+/+) mice chronically treated with anti-murine TNF antibody had BAL fluid leukocyte numbers and lung lesion scores comparable to control antibody-treated mice. These results suggest that, by itself, TNF does not have a critical proinflammatory role in the development of allergic inflammation in this mouse model and that the production of other cytokines associated with allergic disease may compensate for the loss of TNF bioactivity in the TNFR(-/-) mouse.  相似文献   

19.
Obesity is accompanied by a low-grade inflammation state, characterized by increased proinflammatory cytokines levels such as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). In this regard, there exists a lack of studies in hepatic tissue about the role of TNFα receptor 1 (TNFR1) in the context of obesity and insulin resistance during the progression of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to evaluate the effects of high-caloric feeding (HFD) (40% fat, for 16 weeks) on liver inflammation-induced apoptosis, insulin resistance, hepatic lipid accumulation and its progression toward nonalcoholic steatohepatitis (NASH) in TNFR1 knock-out and wild-type mice. Mechanisms involved in HFD-derived IL-1β release and impairment of insulin signaling are still unknown, so we determined whether IL-1β affects liver insulin sensitivity and apoptosis through TNFα receptor 1 (TNFR1)-dependent pathways. We showed that knocking out TNFR1 induces an enhanced IL-1β plasmatic release upon HFD feed. This was correlated with higher hepatic and epididymal white adipose tissue mRNA levels. In vivo and in vitro assays confirmed an impairment in hepatic insulin signaling, in part due to IL-1β-induced decrease of AKT activation and diminution of IRS1 levels, followed by an increase in inflammation, macrophage (resident and recruited) accumulation, hepatocyte apoptotic process and finally hepatic damage. In addition, TNFR1 KO mice displayed higher levels of pro-fibrogenic markers. TNFR1 signaling disruption upon an HFD leads to an accelerated progression from simple steatosis to a more severe phenotype with many NASH features, pointing out a key role of TNFR1 in NAFLD progression.  相似文献   

20.
Bacterial endotoxin (LPS) is responsible for much of the widespread inflammatory response seen in sepsis, a condition often accompanied by acute renal failure (ARF). In this work we report that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced renal failure. Compared with TNFR1(+/+) controls, TNFR1(-/-) mice had less apoptosis in renal cells and fewer neutrophils infiltrating the kidney following LPS administration, supporting these as mediators of ARF. TNFR1(+/+) kidneys transplanted into TNFR1(-/-) mice sustained severe ARF after LPS injection, which was not the case with TNFR1(-/-) kidneys transplanted into TNFR1(+/+) mice. Therefore, TNF is a key mediator of LPS-induced ARF, acting through its receptor TNFR1 in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号