首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We followed the intrahepatic binding and uptake of variously sized ligands with terminal galactosyl residues in rat livers. The ligands were administered to prefixed livers in binding studies and in vivo and in situ (serum-free perfused livers) in uptake studies. Gold sols with different particle diameters were prepared: 5 nm (Au5), 17 nm (Au17), 50 nm (Au50) and coated with galactose exposing glycoproteins (asialofetuin (ASF) or lactosylated BSA (LacBSA)). Electron microscopy of mildly prefixed livers perfused with LacBSA-Au5 in serum-free medium showed ligand binding to liver macrophages, hepatocytes and endothelial cells. Ligands bound to prefixed cell surfaces reflect the initial distribution of receptor activity: pre-aggregated clusters of ligands are found on liver macrophages, single particles statistically distributed on hepatocytes and pre-aggregated clusters of particles restricted to coated pits on endothelial cells. Ligand binding is prevented in the presence of 80 mM N-acetylgalactosamine (GalNAc), while N-acetylglucosamine (GlcNAc) is without effect. Electron microscopy of livers after ligand injection into the tail vein shows that in vivo uptake of electron-dense galactose particles by liver cells is size-dependent. Using a LacBSA-Au preparation with heterogeneous particle diameter (2.2-11.7 nm) we found that hepatocytes take up only ligands up to the size of 7.8 nm, whereas particles of all sizes available in this experiment are found in liver macrophages and endothelial cells. ASF-Au17 and LacBSA-Au17 are endocytosed by liver macrophages and endothelial cells, but not by hepatocytes. ASF-Au50 is taken up by liver macrophages only. In vivo uptake by liver macrophages is mediated by galactose-specific recognition as shown by inhibition with GalNAc. Some 52-65% inhibition was measured in in vivo experiments and 78% inhibition in in situ experiments. GlNAc showed no inhibitory effect. Furthermore, we measured uptake of [125J]ASF and of [125J]ASF adsorbed to Au17 by the different cell populations of rat livers in vivo. While the bulk of the molecular ligand is found in the hepatocyte fraction, the particulate ligand is located in the sinusoidal fraction.  相似文献   

2.
We had hypothesized that preclustered arrangement of galactose-specific receptor activity on rat liver macrophages enables these cells to internalize multivalent, particulate ligands in contrast to the clearance of molecules mediated by statistically distributed receptors on hepatocytes. We now took advantage of the nonclustered receptor distribution in newborn rat liver macrophages to study the in vivo clearance of particulate ligands. Gold particles 5, 17, and 50 nm in diameter (Au5, Au17, Au50), coated with lactosylated bovine serum albumin (LacBSA), were injected into the vena cava and livers were perfusion fixed after allowing for binding and uptake for 3 min. In sinusoidal cells from rats 15 days old LacBSA-Au5 and LacBSA-Au17 were taken up by endothelial cells and all sizes by liver macrophages. In newborn rat liver no LacBSA-Au50 or LacBSA-Au17 was retained in liver macrophages. Uptake of LacBSA-Au5 by sinusoidal cells was significant. LacBSA-Au17 was taken up in significant amounts by endothelial cells of newborn rats which correlates to the findings that galactose-specific binding sites on endothelial cells were found to localize as clusters over coated pits irrespective of age. These results demonstrate the crucial role of clustered receptors in binding and uptake of larger particulate ligands via this lectin-like binding activity.  相似文献   

3.
Liver macrophages have been shown previously to bind and ingest gold particles coated with asialoglycoproteins via a N-acetyl-D-galactosamine / D-galactose-specific lectin (Kolb-Bachofen, V., Schlepper-Sch?fer, J., Vogell, W. and Kolb, H. (1982) Cell 29, 859-866). We present here a quantitative analysis of lectin-dependent particle endocytosis. We used a conjugate of asialofetuin with colloidal gold as ligand, the cellular uptake of which could be followed by spectrophotometry. Freshly isolated Kupffer cells from the rat liver ingest asialofetuin at a rate of approx. 4200 particles/cell per min. Uptake is inhibited by saccharides related in structure to D-galactose and depends on the presence of Ca2+. The rate of endocytosis is zero below 10 degrees C, shows a modest increase until 20 degrees C and a steep increase between 20 and 37 degrees C. Uptake is energy-dependent and strongly inhibited by cytochalasin B but only slightly by colchicine.  相似文献   

4.
Proteoglycans (Mr approximately 200 000) isolated from bovine arterial tissue were decorated with 17 nm diameter gold particles for tracing in electron microscopic thin sections and surface replicas. Lysine and arginine residues of their proteoglycan protein core are assumed to be essential for gold conjugation. The resulting proteoglycan-gold conjugates, which appear as pearl string-like gold strands of about 170 nm in length were used to visualize binding, endocytosis and intracellular translocation of proteoglycans by homologous cultured arterial smooth muscle cells. The proteoglycan-gold conjugates bind to coated as well as to non-coated cell surface membrane areas at 4 degrees C. This is followed by the formation of membrane invaginations. Postincubation at 37 degrees C leads to a time-dependent uptake of proteoglycan-gold conjugates via non-coated and coated vesicles which after fusion are translocated to multivesicular bodies and to large sized vesicles within 1 h. After conversion of these vesicles to lysosomal compartments the gold particles are uncoupled from the proteoglycans and are concentrated within residual vacuoles. From these vacuoles the gold particles are extruded. In contrast to the surface-bound proteoglycan-gold conjugates the released gold particles are condensed to bulky aggregates. The results, which include competition, inhibition and pulse chase experiments, extend biochemical data on endocytosis and degradation of proteoglycans.  相似文献   

5.
By investigating the presence and distribution of GalNAc/Gal-specific receptors on liver cells in vitro and in vivo, we provided evidence that the hepatocyte is not the only liver cell expressing receptor activity but that receptors of similar specificity are found on liver macrophages and also on endothelial cells. The receptor distribution in the plasma membrane is strinkingly different between the three cell types, as judged from the binding pattern of colloidal gold particles coated with asialofetuin or lactosylated serum albumin. Binding to hepatocytes occurs as single particles statistically distributed, binding to liver macrophages in a clustered arrangement all over the cell membrane and binding to endothelial cells also in a clustered arrangement but restricted to coated pits only. The different receptor distribution results in different binding and uptake abilities. Whereas hepatocytes bind and take up molecules and small particles (5 nm) only, the clustered receptor arrangement of endothelial cells and macrophages enables them to effectively bind and ingest larger particles. Ligands larger than 35 nm can be taken up by the macrophages only. The different receptor arrangement results also in different capacities of cell contact formation. Although in vitro liver macrophages and hepatocytes can both bind desialylated cells the macrophage needs much less galactosyl groups exposed on erythrocytes to establish stable contacts than the hepatocyte. The contacts formed by hepatocytes stay reversible for 30 min at 37 degrees C, whereas the contacts formed by the liver macrophages become irreversible after 10 min at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have investigated the initial distribution of mannose-specific binding sites in rat liver as well as the uptake and transcytosis pathways of ligands for this receptor in in situ and in vivo experiments. As ligands we used mannan adsorbed onto colloidal gold particles of sizes 5, 17, and 35 nm (Man-Au5, Man-Au17, or Man-Au35). The in situ binding pattern of Man-Au5 in the prefixed liver is identical to the one described earlier for galactose-exposing ligands in the same organ. With the exception of the binding by hepatocytes, where only scarce binding of Man-Au5 was observed, ligands were found adhering in a preclustered pattern all over the cell surface of liver macrophages and binding in aggregates over the coated pits of endothelial cells. In double-labeling experiments different particle sizes were used for glycoproteins with terminal mannosyl or galactosyl residues. This simultaneous localization of the two binding activities revealed that on endothelial cells the two activities are always found to be present in the same coated pit. On liver macrophages the clustered binding occurred at different membrane areas. Uptake and transcytosis of Man-Au5, 17, 35 were studied after their injection into the tail vein. Three and fifteen minutes after injection most of the Man-Au5 and all of Man-Au17 or Man-Au35 was found in sinusoidal liver cells, i.e., macrophages and endothelial cells. One hour after injection, endocytosed ligand is redistributed from large--presumably lysosomal--vacuoles to small noncoated vesicles that are localized predominantly near the space of Dissé. Between 1 and 40 h after injection, ligands of all sizes are transcytosed and found in the hepatocytes. No ligand accumulation is observed in hepatocytes as an indirect indication for secretion into bile. With this investigation we give evidence for transcytotic activity not only of liver endothelium but also of the resident liver macrophages.  相似文献   

7.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

8.
The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4 degrees C some LDL- or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8 degrees C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37 degrees C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37 degrees C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

9.
In isolated rat hepatocytes fluid phase endocytosis, determined by the uptake of the fluorescent dye lucifer yellow (LY), and receptor mediated endocytosis, determined using a ligand for the asialoglycoprotein receptor (asialo-orosomucoid; ASOR), are different pathways based on their different sensitivities to hyperosmolarity induced by sucrose (Oka and Weigel, J. Cell. Biol. 105, 311a, 1987). LY uptake was unaffected by 0.2 M sucrose at all temperatures tested between 12 degrees and 37 degrees C whereas the uptake of 125I-ASOR was completely inhibited at any temperature. Since the two probes are taken up by different pathways it was possible to determine independently the activation energies (Ea) for the fluid phase versus the receptor mediated coated pit endocytic process. The Ea was 26.4 +/- 3.5 and 25.8 +/- 1.9 kcal/mole for, respectively, receptor mediated and fluid phase endocytosis. These values are not significantly different, and we conclude that the fluid phase and receptor mediated pathways are thermodynamically equivalent even though they are independent.  相似文献   

10.
Endocytosis of immunoglobulin G (IgG)-coated colloidal gold particles in cultured mouse peritoneal macrophages was studied by scanning and transmission electron microscopy. At 4 degrees C, the tracers adhered to the plasma membrane and accumulated in coated pits located in the bottom of furrows or deep invaginations on the cell surface. In the presence of an excess of unlabeled mouse IgG, cellular binding of the tracer was reduced by 80 to 90%. After warming to 37 degrees C, surface-bound tracer particles were rapidly ingested and transported to small and large vesicles lacking membrane coat. From here, they were then passed over to multivesicular bodies and lysosomes characterized by their content of myelin-like figures and other inclusions. Double-labeling experiments with IgG-coated colloidal gold particles of two different sizes (20 and 5 nm diameter) indicated that the plasma membrane was depleted of binding sites after uptake of a polyvalent ligand. The restoration of the binding capacity was a slow process requiring ongoing protein synthesis. On the basis of these observations, a model for endocytosis of immune complexes in macrophages is presented. It includes the following four steps: IgG-containing macromolecular aggregates bind to specific receptors in the plasma membrane. These appear to be preclustered in coated pits or able to move laterally within the membrane even at 4 degrees C. The receptor-ligand complexes are internalized and transferred sequentially to larger uncoated vesicles or endosomes, multivesicular bodies, and lysosomes with inclusions of varying appearance. Receptors and ligands are degraded within the lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The number and distribution of galactose-specific binding sites were investigated in rat liver cells during perinatal development. Ligand binding to hepatocytes, macrophages and endothelial cells was followed with in vitro and in situ experiments by electron microscopy, using lactosylated bovine serum albumin adsorbed onto 5 nm colloidal gold particles as ligand. Binding capacity, starting at a late stage of fetal development, is very low both on the hepatocyte and on the macrophage surface, which show single particles statistically distributed. By contrast, bound particles are absent from fetal endothelial cells, which also lack the typical coated regions. In vivo, experiments at 37 degrees C show that endocytosis occurs to some extent in prenatal life. These results indicate that the expression of galactose-specific receptors' activity on the different liver cell types follows different developmental patterns, which are independently modulated.  相似文献   

12.
The localization of thrombin receptors on mouse embryo (ME) cells was examined using electron microscope (EM) immunocytological techniques. ME cells were fixed with formaldehyde, prior to thrombin binding, and thrombin visualized on cell surfaces using affinity-purified antithrombin rabbit antibody and colloidal gold labeled anti-rabbit IgG. Colloidal gold particles were found in clusters on the surface of cells incubated with thrombin. There were approximately seven particles per cluster observed in thin sections with cluster diameters ranging from 70 to 200 nm. These clusters were not observed on cells incubated without thrombin. The total number of particles present on cells incubated with and without thrombin indicate that the colloidal gold labeling is approximately 98% specific for thrombin. Only four colloidal gold particles out of approximately 1,200 were associated with coated pits. Thus the thrombin receptor clusters do not appear to associate with coated membrane regions. To determine whether receptor-bound thrombin was internalized by receptor-mediated endocytosis, ME cells were incubated with 125I-thrombin and examined using EM autoradiography and the trypsin sensitivity of 125I-thrombin which was associated with the cells. In two types of experiments, where thrombin was incubated with cells at 4 degrees C and the temperature increased to 37 degrees C and where initial incubation was at 37 degrees C, the receptor-directed specific internalization proceeded at approximately the same rate as nonspecific internalization. These studies indicate that thrombin that binds to its receptors on ME cells is not rapidly internalized by receptor-mediated endocytosis.  相似文献   

13.
Cholesteryl ester-loaded macrophages, or foam cells, are a prominent feature of atherosclerotic lesions. Low density lipoprotein (LDL) receptor-mediated endocytosis of native LDL is a relatively poor inducer of macrophage cholesteryl ester accumulation. However, the data herein show that in the presence of a very small amount of sphingomyelinase, LDL receptor-mediated endocytosis of 125I-LDL was enhanced and led to a 2-6-fold increase in 125I-LDL degradation and up to a 10-fold increase in cholesteryl ester accumulation in macrophages. The enhanced lipoprotein uptake and cholesterol esterification was seen after only approximately 12% hydrolysis of LDL phospholipids, was specific for sphingomyelin hydrolysis, and appeared to be related to the formation of fused or aggregated spherical particles up to 100 nm in diameter. Sphingomyelinase-treated LDL was bound by the macrophage LDL receptor. However, when unlabeled acetyl-LDL, a scavenger receptor ligand, was present during or after sphingomyelinase treatment of 125I-LDL, 125I-LDL binding and degradation were enhanced further through the formation of LDL-acetyl-LDL mixed aggregates. Experiments with cytochalasin D suggested that endocytosis, not phagocytosis, was involved in internalization of sphingomyelinase-treated LDL. Nonetheless, the sphingomyelinase effect on LDL uptake was macrophage-specific. These data illustrate that LDL receptor-mediated endocytosis of fused LDL particles can lead to foam cell formation in cultured macrophages. Furthermore, since both LDL and sphingomyelinase are present in atherosclerotic lesions and since some lesion LDL probably is fused or aggregated, there is a possibility that sphingomyelinase-treated LDL is a physiologically important atherogenic lipoprotein.  相似文献   

14.
Receptor-mediated endocytosis of IgG and immune complexes in macrophages is terminated with digestion of the ligand in lysosomes. However, there are controversial data on whether Fc receptors are degraded together with the ligand or recycled to the cell surface. In the present study, rat peritoneal macrophages were incubated at 4 degrees C with rat peroxidase-antiperoxidase (PAP) complex for 1 h, washed and warmed up to 37 degrees C for different time periods and reincubated with new PAP at 4 degrees C. In another series of experiments, the cells were preincubated with 50 nM monensin, then cooled to 4 degrees C and reincubated with PAP in the presence of monensin. The cells were fixed and processed for electron microscopy at different stages of the experiments. Quantitative data were obtained by measuring PAP-binding membrane lengths on electron micrographs (morphometry) and by determining surface-bound PAP with spectrophotometry. In macrophages which had bound PAP at 4 degrees C and were warmed up for 5 min, the PAP was cleared from the cell surface and was found in endosome-like structures. When reincubated with PAP at 4 degrees C, such cells again bound the ligand on the cell surface, mainly in labyrinthic invaginations of the plasma membrane (synonyms: lacunae, caveolar indentations). Macrophages which had been warmed up for longer periods (30 and 60 min) showed the bound ligand all along the plasma membrane. Treatment of cells with monensin did not affect internalization of PAP, however, it decreased the ligand binding ability of macrophages considerably. These findings led us to assume an Fc receptor replenishment from a cytoplasmic pool.  相似文献   

15.
Complexes formed between labelled proteolytic enzymes (trypsin, subtilopeptidase A) and the alpha-macroglobulins of plasma are rapidly and selectively taken up by rabbit alveolar macrophages. The uptake occurs over a narrow zone of pH. Kinetics of the uptake is affected by temperature; in particular, incubation of macrophages at 37 degrees C before the addition of the labelled complex reduces the capacity to take up complexes. EDTA prevents the association of labelled complexes with macrophages, and can dissociate previously bound label. The effect of EDTA is reversed by the addition of calcium or magnesium or both. Iodoacetamide does not prevent the uptake of complexes but causes them to remain available for dissociation from the cells by EDTA. Incubation of complexes with macrophages at 37 degrees C with no iodoacetamide results in the appearance of trichloroacetic acid soluble products of the enzyme in the supernatant fluid. These observations indicate that the selective uptake of proteinase-alpha-macroglubin complexes by rabbit alveolar macrophages can be resolved into three phases: (1) membrane binding which depends upon divalent cations and is pH sensitive, (2) endocytosis inhibitable by iodoacetamide and (3) temperature-dependent hydrolysis of the contained labelled enzyme.  相似文献   

16.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

17.
We have analyzed interaction of recombinant human surfactant protein A (SP-A) with isolated rat alveolar macrophages in the electron microscope. SP-A coated onto gold particles of different diameter is bound and internalized by macrophages. Binding and uptake occurs via coated membrane structures. SP-A gold particles are transported to secondary lysosomes. Binding and uptake is specific; i.e., excess of SP-A inhibits SP-A gold particle binding and uptake by 67% and depends on the presence of divalent cations. In experiments with ManBSA (5 x 10(-6) M) inhibition is 60%, but no inhibition occurs with GalBSA. The mannose-dependent interaction of SP-A particles with macrophages is not due to the mannose-specific receptor on the cell surface of macrophages as shown in experiments with macrophages exhibiting reduced mannose receptor activity. These cells show reduced binding and uptake of mannan gold particles (42% inhibition) but no reduction of SP-A gold particle binding and uptake. Furthermore, mannan gold particles do not compete with binding of SP-A gold particles.  相似文献   

18.
Summary The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4° C some LDL-or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8° C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37° C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37° C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

19.
The patching and endocytosis of EGF (epidermal growth factor) bound to A-431 cells (a human epidermoid carcinoma line) are temperature-sensitive processes which are completely inhibited at 4 degrees C. Receptor-mediated endocytosis generally occurs through coated regions, and EGF bound to its membrane receptor must diffuse laterally to these points of internalization. In this work we investigated the thermal sensitivity of the lateral diffusion of EGF receptor complexes and the thermal sensitivity of the patching and endocytosis of the hormone receptor complexes. Using the fluorescence photobleach recovery technique, we measured the lateral diffusion coefficients of a fluorescent derivative of EGF as a function of temperature. The lateral diffusion coefficient (D) increased gradually from 2.8 X 10(-10) cm2/s at 5 degrees C to 8.5 X 10(-10) cm2/s at 37 degrees C, and no phase transition was detected. Neither was a phase transition detected when we measured the diffusion coefficient of fluorescent lipid probes over this temperature range. From a calculation of the collision frequency of the occupied EGF receptors with coated regions using our measured values of D at 5 and 37 degrees C, we conclude that diffusion is not the rate-limiting step for either endocytosis or patching.  相似文献   

20.
The uptake mechanism of homologous IgG and immune complex, and the participation of coated vesicles in this process were studied in rat peritoneal macrophages. Peroxidase-antiperoxidase (PAP) immune complex produced in rat, and purified rat IgG adsorbed to gold particles (IgG-Au) were used as ligands. Freshly collected peritoneal macrophages were preincubated with the ligands at 4 degrees C, washed, warmed up to 37 degrees C, maintained in a serum-free culture medium for 5 sec to 30 min and subsequently fixed for electron microscopy. In the IgG-Au experiments, acid phosphatase reaction was also applied to identify lysosomes, and ruthenium red to trace membranes exposed to the extracellular space. At the end of the preincubation period PAP and IgG were found randomly distributed on the external surface of the plasma membrane. After warming up the cells to 37 degrees C, the ligands bound to the plasma membrane showed a tendency to move towards deep labyrinthic invaginations of the cell surface from where they were internalized via coated pits and coated vesicles. In the initial period, these structures seemed to be the primary carriers of the ligands. In the period between 5 and 10 min, ligands were concentrated in vacuoles (endosomes) located in the deeper cytoplasm, while after 30 min, they were present in large lysosome-like or multivesicular bodies, which were found to be acid phosphatase positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号