首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol 218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles, three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble triterpenoids such as OA.  相似文献   

2.
The aim of the present investigation was to evaluate microemulsion as a vehicle for dermal drug delivery and to develop microemulsion-based gel of terbinafine for the treatment of onychomycosis. D-optimal mixture experimental design was adopted to optimize the amount of oil (X 1), Smix (mixture of surfactant and cosurfactant; X 2) and water (X 3) in the microemulsion. The formulations were assessed for globule size (in nanometers; Y 1) and solubility of drug in microemulsion (in milligrams per milliliter; Y 2). The microemulsion containing 5.75% oil, 53.75% surfactant–cosurfactant mixture and 40.5% water was selected as the optimized batch. The globule size and solubility of the optimized batch were 18.14 nm and 43.71 mg/ml, respectively. Transmission electron microscopy showed that globules were spherical in shape. Drug containing microemulsion was converted into gel employing 0.75% w/w carbopol 934P. The optimized gel showed better penetration and retention in the human cadaver skin as compared to the commercial cream. The cumulative amount of terbinafine permeated after 12 h was 244.65 ± 18.43 μg cm−2 which was three times more than the selected commercial cream. Terbinafine microemulsion in the gel form showed better activity against Candida albicans and Trichophyton rubrum than the commercial cream. It was concluded that drug-loaded gel could be a promising formulation for effective treatment of onychomycosis.  相似文献   

3.
A Phoma sp., known to produce the pharmaceutically active metabolites squalestatin 1 (S1) and squalestatin 2 (S2), was cultured on malt-extract/agar (MEA) over a range of water activities (a w, 0.995–0.90) and temperatures (10–35 °C) to investigate the influence on growth and metabolite production. Use of the ionic solute NaCl to adjust a w resulted in significantly lower (P < 0.01) squalestatin yields than when the Phoma sp. was grown on MEA amended with the non-ionic solute glycerol. Water activity and temperature and their interactions were highly significant factors (P < 0.001) affecting growth of the Phoma sp., with optimum conditions of 0.998–0.980 a w and 25 °C. Squalestatin production was similarly influenced by a w, temperature, time and their interactions (P < 0.001). S1 and S2 production occurred over a narrower a w and temperature range than growth, with a slightly lower optimum a w range of 0.995–0.980 a w. The optimum temperature for squalestatin production varied from 20 °C (S1) to 25 °C (S2) and yields of S2 were up to 1000 times lower than those of S1. The ratio of S1 and S2 produced by the Phoma sp. was influenced by a w and temperature, with highest values at 0.99–0.98 a w, and at 15 °C. Incubation times of 28 days gave highest yields of both S1 and S2. Up to 2000-fold increases in squalestatin yields were measured at optimum environmental conditions, compared to the unmodified MEA. This indicates the need to consider such factors in screening systems used to detect biologically active lead compounds produced by fungi. Received: 2 June 1997 / Received last revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

4.
The purpose of this study was to evaluate the effect of formulation components on the in vitro skin permeation of microemulsion drug delivery system containing fluconazole (FLZ). Lauryl alcohol (LA) was screened as the oil phase of microemulsions. The pseudo-ternary phase diagrams for microemulsion regions were constructed using LA as the oil, Labrasol (Lab) as the surfactant and ethanol (EtOH) as the cosurfactant. The formulation which showed a highest permeation rate of 47.15 ± 1.12 μg cm−2 h−1 and appropriate physicochemical properties was optimized as containing 2% FLZ, 10% LA, 20% Lab/EtOH (1:1), and 68% double-distilled water (w/w). The efficiency of microemulsion formulation in the topical delivery of FLZ was dependent upon the contents of water and LA as well as Lab/EtOH mixing ratio. It was concluded that the percutaneous absorption of FLZ from microemulsions was enhanced with increasing the LA and water contents, and with decreasing the Lab/EtOH ratio in the formulation. Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved, which showed the widest zone of inhibition as compared to FLZ reference. The studied microemulsion formulation showed a good stability for a period of 3 months. These results indicate that the studied microemulsion formulation might be a promising vehicle for topical delivery of FLZ.  相似文献   

5.
The anti-yeast activities of a food-grade dilution-stable microemulsion against Candida albicans and Saccharomyces cerevisiae have been studied. The weight ratio of the formulated microemulsion is glycerol monolaurate (GML)/propionic acid/Tween 80/sodium benzoate (SB)/water = 3:9:14:14:24. Results of anti-yeast activity on solid medium by agar diffusion method showed that the anti-yeast activity of the microemulsion at 4.8 mg/ml was comparable to that of natamycin at 0.1 mg/ml as positive control. Results of anti-yeast activity in liquid medium by broth dilution method showed that the growth of both C. albicans and S. cerevisiae was completely inhibited when the liquid medium containing 106 cfu/ml was treated with 1.2 mg/ml microemulsion, which was determined as minimum fungicidal concentration. The kinetics of killing results showed that the microemulsion killed over 90% yeast cells rapidly within 15 min and caused a complete loss of viability in 120 min. Among the components, SB and GML had a similar anti-yeast activity, followed by propionic acid, while Tween 80 exhibited no activity and could not enhance the anti-yeast activities of these components, and it was revealed that the anti-yeast activity of the microemulsion was attributed to a combination of propionic acid, GML, and SB. The anti-yeast activity of the microemulsion was in good agreement with the leakage of 260-nm absorbing materials and the observation of transmission electron microscopy, indicating that the microemulsion induced the disruption and dysfunction of the cell membrane.  相似文献   

6.
Surmounting the constraints of limited solubilization efficiency and prime requisite of antioxidant for conventional lipid formulations, the research work explores an edge over formulation utilizing potential applicability of rice germ oil (RGO) as a multifunctional excipient. Self-microemulsifying drug delivery system (SMEDDS) of tacrolimus (TAC) was formulated with RGO, an indigenous source of gamma-oryzanol. Being the same biological source, RGO and rice bran oil (RBO) were compared and it was found that RGO have more solubilization potential for TAC (2.2-fold) as well as higher antioxidant activity (8.06-fold) than the RBO. TAC-SMEDDS was prepared using RGO/Capmul PG8 (2:3) as an oil phase, Cremophore EL as a surfactant, and Transcutol P as a cosurfactant. The approximate particle size of TAC-SMEDDS was found to be 38 nm by dynamic light scattering and 12 nm by small angle neutron scattering. The in vitro dissolution studies showed complete and rapid drug release in 30 min compared to a plain drug (<5%) and marketed capsule (<50%). AUC and C max were found to be 45.05 ± 15.64 ng h/ml and 3.91 ± 1.2 ng/ml for TAC-SMEDDS, 12.59 ± 5.54 ng h/ml and 0.48 ± 0.12 ng/ml for plain TAC, and 30.23 ± 10.34 ng h/ml and 2.31 ± 0.68 ng/ml for marketed formulation, respectively. The improved pharmacokinetic profile of TAC-SMEDDS is correlating to the dissolution results. Thus, gamma-oryzanol-enriched RGO acts as a potential multifunctional excipient for lipid formulations.  相似文献   

7.
The purpose of this research was the preparation of four formulations containing hydrocortisone acetate (HCA) for topical application, including two aqueous systems (hydrophilic microemulsion and aqueous gel) and two systems with dominant hydrophobicity (hydrophobic microemulsion and ointment). The formulations were tested for the release and permeation of HCA across an animal membrane. The release of HCA was found comparable for the four systems. The two microemulsions promote permeation across an ex-vivo membrane, examined by means of a Franz cell. Hydrophobic microemulsion guarantees the highest solubility (2,370 μg/ml) and flux (133 μg/cm2.h) of the drug, since it contains almost 40% Transcutol, a permeation enhancer. Gel and ointment provide lower solubility and flux, being the values, related to the ointment, the lowest ones (562 μg/ml and 0.4 μg/cm2.h). Experimental results allow the conclusion that gel and ointment can be suitable when it is desirable to minimize absorption of topically applied HCA as to keep the drug restricted to the diseased area and prevent side effects of the systemic presence of HCA.  相似文献   

8.
The purpose of this work was to develop w/o emulsions that could be safely used to promote transdermal delivery of 5-fluorouracil (5-FU). Two pseudo-ternary phase diagrams comprising oleoyl-macrogol glycerides, water, and a surfactant/co-surfactant (S/CoS) mixture of lecithin, ethanol, and either coco glucoside or decyl glucoside were investigated for their potential to develop promising 5-FU emulsions. Six systems were selected and subjected to thermodynamic stability tests; heat–cool cycles, centrifugation, and finally freeze–thaw cycles. All systems passed the challenges and were characterized for transmission electron microscopy, droplet size, rheological behavior, pH, and transdermal permeation through newly born mice skin in Franz diffusion cells. The systems had spherical droplets ranging in diameter from 1.81 to 2.97 μm, pH values ranging from 7.50 to 8.49 and possessed Newtonian flow. A significant (P < 0.05) increase in 5-FU permeability parameters as steady-state flux, permeability coefficient was achieved with formula B5 comprising water (5% w/w), S/CoS mixture of lecithin/ethanol/decyl glucoside (14.67:12.15:18.18% w/w, respectively) and oleoyl-macrogol glycerides (50% w/w). When applied to shaved rat skin, this system was well tolerated with only moderate skin irritation that was recovered within 12 h. Indeed, minor histopathologic changes were observed after 5-day treatment. Further studies should be carried out, in the future, to investigate the potentiality of this promising system to promote transdermal delivery of 5-FU through human skin.  相似文献   

9.
The formulation study of tenoxicam, a poorly water-soluble drug, was developed by use of a ternary cosolvent system and has significantly enhanced the solubility. Additionally, the relative bioavailability of testing formulation was also evaluated by New Zealand rabbit with a single i.m. injection. The three-phase diagram for dimethylsulfoxide (DMSO)/propylene glycol/water, DMSO/ethanol/water, and DMSO/polyethoxylated castor oil/ethanol system was developed. The volume ratio of 5:4:1 in the DMSO/polyethoxylated castor oil/ethanol system resulted in a more suitable vehicle than other systems, with a high solubility (20.73 mg/ml) and low viscosity (10.0 Cp). A pharmacokinetic study of bioequivalence (F rel = 0.89) was also obtained. The present study not only provides a novel strategy improving tenoxicam solubility but also helps further scientific knowledge for the development of parenteral formulations.  相似文献   

10.
Four species of brown seaweeds, namely Sargassum baccularia, Sargassum binderi, Sargassum siliquosum and Turbinaria conoides, harvested from Port Dickson, Negeri Sembilan, Malaysia were analysed for ash content, alginate yield and alginate properties. Seaweeds calcined at 450°C were found to have low amount of non-combustible residue as these were not contaminated by calcareous animals. Alginate was extracted from these seaweeds by two methods: hot and cold. In the hot method, the storing time was 3 h and the processing temperature was 50°C, whilst in the cold method, the sample was stored overnight at room temperature. Higher yield of alginate was obtained by the hot method compared to the cold method, but alginate extracted by the cold method gave higher molecular weight. In the hot method, 49.9% of alginate was extracted from S. siliquosum, followed by T. conoides (41.4%), S. binderi (38.9%) and S. baccularia (26.7%). Alginate extracted from T. conoides has an average molecular weight, M w, of 8.06 × 105 g mol−1, whereas alginate from S. siliquosum was the lowest in M w (4.81 × 105 g mol−1) when the extraction was done at room temperature. Alginate extracted from S. baccularia was found to be very heat-sensitive. Its M w has dropped more than 83%, from 7.52 × 105 to 1.23 × 105 g mol−1, when the extraction temperature was raised. The effect of heat on the extent of depolymerisation of the alginate molecule of the other three brown seaweed species was less significant, with decrease in molecular weight ranging between 13% and 16%.  相似文献   

11.
To develop a microbial treatment of edible oil-contaminated wastewater, microorganisms capable of rapidly degrading edible oil were screened. The screening study yielded a yeast coculture comprising Rhodotorula pacifica strain ST3411 and Cryptococcus laurentii strain ST3412. The coculture was able to degrade efficiently even at low contents of nitrogen ([NH4–N] = 240 mg/L) and phosphorus sources ([PO4–P] = 90 mg/L). The 24-h degradation rate of 3,000 ppm mixed oils (salad oil/lard/beef tallow, 1:1 w/w) at 20°C was 39.8% ± 9.9% (means ± standard deviations of eight replicates). The highest degradation rate was observed at 20°C and pH 8. In a scaled-up experiment, the salad oil was rapidly degraded by the coculture from 671 ± 52.0 to 143 ± 96.7 ppm in 24 h, and the degradation rate was 79.4% ± 13.8% (means ± standard deviations of three replicates). In addition, a repetitive degradation was observed with the cell growth by only pH adjustment without addition of the cells.  相似文献   

12.
Valsartan orodispersible tablets have been developed at 40-mg dose, with the intention of facilitating administration to patients experiencing problems with swallowing and hopefully, improving its poor oral bioavailability. Work started with selecting drug compatible excipients depending on differential scanning calorimetric analysis. A 33 full factorial design was adopted for the optimization of the tablets prepared by freeze-drying technique. The effects of the filler type, the binder type, and the binder concentration were studied. The different tablet formulas were characterized for their physical properties, weight variation, disintegration time, surface properties, wetting properties, and in vitro dissolution. Amongst the prepared 27 tablet formulas, formula number 6 (consisting of 4:6 valsartan:mannitol and 2% pectin) was selected to be tested in vivo. Oral bioavailability of two 40 mg valsartan orodispersible tablets was compared to the conventional commercial tablets after administration of a single dose to four healthy volunteers. Valsartan was monitored in plasma by high-performance liquid chromatography. The apparent rate of absorption of valsartan from the prepared tablets (C max = 2.879 μg/ml, t max = 1.08 h) was significantly higher than that of the conventional tablets (C max = 1.471 μg/ml, t max = 2.17 h), P ≤ 0.05. The relative bioavailability calculated as the ratio of mean total area under the plasma concentration–time curve for the orodispersible tablets relative to the conventional ones was 135%. The results of the in vivo study revealed that valsartan orodispersible tablets would be advantageous with regards to improved patient compliance, rapid onset of action, and increase in bioavailability.  相似文献   

13.
Formulation of a new oil-in-water (o/w) microemulsion composed of castor oil/Tween 80/ethanol/phosphate buffer for enhancing the loading capacity of an anti-inflammatory drug piroxicam has been accomplished. The pseudo-ternary phase diagram has been delineated at constant surfactant/cosurfactant ratio (1:2). The internal structure of so created four-component system was elucidated by means of an analysis of isotropic area magnitudes in the phase diagram. Conductivity (σ), kinematic viscosity (k η ), and surface tension (γ) studies with the variation in Φ w (weight fraction of aqueous phase) show the occurrence of structural changes from water-in-oil (w/o) microemulsion to oil-in-water (o/w). Along with the solubility and partition studies of piroxicam in microemulsion components, the changes in the microstructure of the microemulsion after incorporation of drug have been evaluated using pH, σ, γ, k η , and density studies. Piroxicam, a poorly water-soluble drug displayed high solubility (1.0%) in an optimum microemulsion formulation using ethanol (55.0%), Tween 80 (26.5%), castor oil (7.5%), and phosphate buffer (11.0%). The results have shown that the microemulsion remained stable after the incorporation of piroxicam. Fluorescence spectra analysis taking pyrene as fluorescent probe was performed, and the results showed that pyrene was completely solubilized in the oil phases of the bicontinuous microemulsions. The fluorescence spectrum of the model drug piroxicam was used to probe the intramicellar region of nonionic microemulsion. The results showed that the piroxicam was localized in the interfacial film of microemulsion systems more deeply in the palisade layer with ethanol as the cosurfactant.  相似文献   

14.
The current research work investigates the potential of solid lipid nanoparticles (SLNs) in improving the oral bioavailability of paclitaxel. Paclitaxel-loaded SLNs (PTX-SLNs) were prepared by modified solvent injection method using stearylamine as lipid, soya lecithin and poloxamer 188 as emulsifiers. SLNs were characterized in terms of surface morphology, size and size distribution, surface chemistry and encapsulation efficiency. Pharmacokinetics and bioavailability studies were conducted in male Swiss albino mice after oral administration of PTX-SLNs. SLNs exhibited spherical shape with smooth surface as analyzed by transmission electron microscopy (TEM). The mean particle size of SLNs was 96 ± 4.4 nm with a low polydispersity index of 0.162 ± 0.04 and zeta potential of 39.1 ± 0.8 mV. The drug entrapment efficiency was found to be 75.42 ± 1.5% with a loading capacity of 31.5 ± 2.1% (w/w). Paclitaxel showed a slow and sustained in vitro release profile and followed Higuchi kinetic equations. After oral administration of the PTX-SLNs, drug exposure in plasma and tissues was ten- and twofold higher, respectively, when compared with free paclitaxel solution. PTX-SLNs produced a high mean C max (10,274 ng/ml) compared with that of free paclitaxel solution (3,087 ng/ml). The absorbed drug was found to be distributed in liver, lungs, kidneys, spleen, and brain. The results suggested that PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of paclitaxel as observed by in vivo toxicity studies.  相似文献   

15.
The purpose of this study was to develop a lyotropic liquid crystalline formulation using the emulsifier vitamin E TPGS and evaluate its behavior after incorporation of a flavonoid, quercetin. The physical (macro and microscopic), chemical (determination of quercetin content by the HPLC method) and functional (determination of quercetin antioxidant activity by DPPH assay) stability of the lamellar liquid crystalline formulation containing flavonoid was evaluated when stored at 4 ± 2 °C; 30 ± 2 °C/70 ± 5% RH (relative humidity) and 40 ± 2 °C/70 ± 5% RH during 12 months. The lamellar liquid crystalline structure of the formulation was maintained during the experiment, however chemical and functional stability results showed a great influence of the storage period in all conditions tested. A significant decrease in quercetin content (approximately 40%) was detected during the first month of storage and a similar significant loss in antioxidant activity was detected after 6 months. The remaining flavonoid content was unchanged during the final 6 months of the experimental period. The results suggest possible interactions between quercetin and the liquid crystalline formulation, which could inhibit or reduce the quercetin activity incorporated in the system. In conclusion, the present study demonstrated that incorporation of quercetin (1%) did not affect the liquid crystalline structure composed of vitamin E TPGS/IPM/PG–H2O (1:1) at 63.75/21.25/15 (w/w/w). Nevertheless, of the total quercetin incorporated in the system only 60% was free to act as an antioxidant.  相似文献   

16.
The purpose of the present study was to investigate the potential of nanoemulsions as nanodrug carrier systems for the percutaneous delivery of ropinirole. Nanoemulsions comprised Capryol 90 as the oil phase, Tween 20 as the surfactant, Carbitol as the cosurfactant, and water as an external phase. The effects of composition of nanoemulsion, including the ratio of surfactant and cosurfactant (S mix) and their concentration on skin permeation, were evaluated. All the prepared nanoemulsions showed a significant increase in permeation parameters such as steady state flux (J ss) and permeability coefficient (K p) when compared to the control (p < 0.01). Nanoemulsion composition (NEL3) comprising ropinirole (0.5% w/w), Capryol 90 (5% w/w), S mix 2:1 (35% w/w), and water (59.5% w/w) showed the highest flux (51.81 ± 5.03 μg/cm2/h) and was selected for formulation into nanoemulsion gel. The gel was further optimized with respect to oil concentration (Capryol 90), polymer concentration (Carbopol), and drug content by employing the Box–Behnken design, which statistically evaluated the effects of these components on ropinirole permeation. Oil and polymer concentrations were found to have a negative influence on permeation, while the drug content had a positive effect. Nanoemulsion gel showed a 7.5-fold increase in skin permeation rate when compared to the conventional hydrogel. In conclusion, the results of the present investigation suggested a promising role of nanoemulsions in enhancing the transdermal permeation of ropinirole.  相似文献   

17.
The growth conditions and ochratoxin A (OTA) production of Aspergillus strains were studied in aniseed (Pimpinella anisum L.)-based media. The results showed that methanol/NaHCO3 (50:50, v/v) mixture for extraction and competitive direct ELISA analytical method are capable of detecting low OTA concentrations in this raw material, which were confirmed by HPLC with fluorescence detection (R 2 = 0.994). In aniseed meal extract agar artificially contaminated with selected fungi, the higher OTA values obtained were 283.8 ± 28.1 μg L-1 for A. carbonarius and between 1.7 ± 0.1 μg L-1 and 16.5 ± 12.8 μg L-1 for A. steynii strains. While the optimal conditions of growth for A. carbonarius and A. steynii are 28°C and 0.98 a w, the optimal production of OTA was observed at 0.99 a w for both A. carbonarius and A. steynii but at 22°C and 28°C, respectively. Except in one sample, all the aniseed samples analysed were negative for OTA natural contamination. This study demonstrates that aniseed can be a matrix capable to contamination with OTA, at least produced by A. carbonarius and A. steynii strains, regardless of the antimicrobial properties of aniseed essential oil.  相似文献   

18.
A novel low-cost medium was developed from by-products and wastes from the ethanol agro-industry to replace commercial media in the production of a steam sterilization biological indicator (BI). Various recovery media were developed using soybean or sugarcane molasses and vinasse to prepare a self-contained BI. Media performance was evaluated by viability and heat resistance (D 121 °C value) according to regulatory standards. A medium produced with a soybean vinasse ratio of 1:70 (1.4%) (w/v) produced the results, with D 121 °C = 2.9 ± 0.5 min and Usk = 12.7 ± 2.1 min. The addition of 0.8% (w/v) yeast extract improved the germination of heat-damaged spores. The pH variation from 6.0 to 7.3 resulted in a gradual increase in the D 121 °C value. The absence of calcium chloride resulted in a decrease in germination, while no significant differences were observed with starch addition. Soybean vinasses may thus be used as the main component of a culture medium to substitute for commercial media in the production of self-contained biological indicators. The use of ethanol production waste in this biotechnological process realized a reliable performance, minimized the environmental impact, and decreased BI production costs while producing a high quality product.  相似文献   

19.
The kinetics of phase separation and microstructure of oat β-glucan/whey protein binary mixtures varying in concentration (4–16% w/v protein, 0.3–1.2% w/v β-glucan) and β-glucan molecular weight (1.3 × 106, 640 × 103, 180 × 103, and 120 × 103 g/mol) was investigated by turbidimetry and fluorescent microscopy. The phase separation of the mixed systems was followed at pH 7.0 and at room temperature under quiescent conditions. Application of first principles revealed that phase separation of the systems follows first-order kinetics. Acceleration of the phase-separation process was observed with increase of β-glucan concentration for the three lowest-MW samples but the highest molecular weight (1.3 × 106 g/mol) exhibited the opposite trend. Changes in the polysaccharide molecular weight resulted in considerable differences in β-glucan aggregate morphology in the mixed systems. The change in the continuity of the mixed system from polysaccharide-, to bi-, to protein-continuous was confirmed for a wide range of mixed systems differing in biopolymer concentration, and β-glucan molecular weight.  相似文献   

20.
This article reports rate constants for thiol–thioester exchange (k ex), and for acid-mediated (k a), base-mediated (k b), and pH-independent (k w) hydrolysis of S-methyl thioacetate and S-phenyl 5-dimethylamino-5-oxo-thiopentanoate—model alkyl and aryl thioalkanoates, respectively—in water. Reactions such as thiol–thioester exchange or aminolysis could have generated molecular complexity on early Earth, but for thioesters to have played important roles in the origin of life, constructive reactions would have needed to compete effectively with hydrolysis under prebiotic conditions. Knowledge of the kinetics of competition between exchange and hydrolysis is also useful in the optimization of systems where exchange is used in applications such as self-assembly or reversible binding. For the alkyl thioester S-methyl thioacetate, which has been synthesized in simulated prebiotic hydrothermal vents, k a = 1.5 × 10−5 M−1 s−1, k b = 1.6 × 10−1 M−1 s−1, and k w = 3.6 × 10−8 s−1. At pH 7 and 23°C, the half-life for hydrolysis is 155 days. The second-order rate constant for thiol–thioester exchange between S-methyl thioacetate and 2-sulfonatoethanethiolate is k ex = 1.7 M−1 s−1. At pH 7 and 23°C, with [R″S(H)] = 1 mM, the half-life of the exchange reaction is 38 h. These results confirm that conditions (pH, temperature, pK a of the thiol) exist where prebiotically relevant thioesters can survive hydrolysis in water for long periods of time and rates of thiol–thioester exchange exceed those of hydrolysis by several orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号