首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   

2.
3.
4.
5.
6.
In an attempt to isolate the transposable genetic element Ds from Zea mays L., we cloned DNA fragments hybridizing to a cDNA clone derived from the sucrose synthase gene in a λ vector (λ::Zm Sh). The fragments cloned from wild-type and from the Ds-induced mutant sh-m5933::Zm sh-m5933) share a segment 6 kb long while a contiguous segment of 15 kb of λ::Zm sh-m5933 (mutant-derived DNA) does not hybridize to the DNA segment cloned from the wild-type. Restriction maps are given, and the junction point between the two DNA segments in the mutant clone was determined. Hybridization of DNA fragments, present in the wild-type DNA of λ::Zm Sh, but not in the mutant clone, λ::Zm sh-m5933, to genomic DNA of sh-m5933 showed that no part of this DNA is deleted. It cannot be said whether the DNA found in the mutant, but not in the wild-type clone, has been brought there by Ds insertion or by another Ds-dependent DNA rearrangement. The mutant-derived DNA was hybridized to genomic DNA of various maize lines digested by several restriction endonucleases. Approximately 40 bands were detected. The mutant-derived DNA contains two pairs of inverted repeats several hundred nucleotide pairs long, one of which is located at the junction to wild-type-derived DNA.  相似文献   

7.
Calcineurin B-like protein-interacting protein kinases (CIPKs) are a group of typical Ser/Thr protein kinases that mediate calcium signals. Extensive studies using Arabidopsis plants have demonstrated that many calcium signatures that activate CIPKs originate from abiotic stresses. However, there are few reports on the functional demonstration of CIPKs in other plants, especially in grasses. In this study, we used a loss-of-function mutation to characterize the function of the rice CIPK gene OsCIPK31. Exposure to high concentrations of NaCl or mannitol effected a rapid and transient enhancement of OsCIPK31 expression. These findings were observed only in the light. However, longer exposure to most stresses resulted in downregulation of OsCIPK31 expression in both the presence and absence of light. To determine the physiological roles of OsCIPK31 in rice plants, the sensitivity of oscipk31::Ds, which is a transposon Ds insertion mutant, to abiotic stresses was examined during germination and seedling stages. oscipk31::Ds mutants exhibited hypersensitive phenotypes to ABA, salt, mannitol, and glucose. Compared with wild-type rice plants, mutants exhibited retarded germination and slow seedling growth. In addition, oscipk31::Ds seedlings exhibited enhanced expression of several stress-responsive genes after exposure to these abiotic stresses. However, the expression of ABA metabolic genes and the endogenous levels of ABA were not altered significantly in the oscipk31::Ds mutant. This study demonstrated that rice plants use OsCIPK31 to modulate responses to abiotic stresses during the seed germination and seedling stages and to modulate the expression of stress-responsive genes.  相似文献   

8.
The unstable allele sh-m6233 caused by insertion of the transposable element Ds into the sucrose synthase gene of maize, was cloned. The mutation is caused by the insertion of an ˜4 kb DNA segment, consisting of two identical Ds elements of ˜2000 bp length, of which one is inserted into the center of the other in inverted orientation. This structure is, at the level of restriction mapping and partial DNA sequencing, identical to the double Ds element found in a larger insert in the mutant allele sh-m5933. 8 bp of host DNA are duplicated upon insertion. In a revertant, a 6-bp duplication is retained.  相似文献   

9.
Alcohol dehydrogenases (ADH) from the F1 progeny of all pairwise crosses between 12 null-activity mutants and crosses between these mutants and four active variants, ADHn5 ADHF, ADHD and ADHS, were analyzed for the presence of active or inactive heterodimers. Gels were stained for ADH enzyme activity, and protein blots of duplicate gels were probed with ADH-specific antibody to detect cross-reacting material. Crosses between the three major electrophoretic variants. ADHF, ADHS and ADHD, all produced active heterodimers. Four mutant proteins (ADHn2, ADHn4, ADHn10 and ADHn13) did not form heterodimers with any other ADH subunit tested. Of the 28 crosses involving the remaining null activity mutants, 22 produce heterodimers. Twelve of these exhibit partial restoration of enzyme activity. In five cases of active heterodimers from null-activity crosses, Adhn11 supplied one of the subunits. In two crosses involving the active variant ADHD, the null activity mutant subunits (ADHn8 and ADHn3) destabilized the heterodimer sufficiently to cause inactivation of the ADHD subunit. In the cross between AdhF and Adhn3, the activity of the ADHF subunit was also greatly reduced in association with the ADHn3 subunit. Two crosses (Adhn1 x Adhn11 and Adhn5 x Adhn12) result in partial restoration of one of the homodimeric proteins (ADH n1 and ADHn12, respectively), as well as forming active heterodimers.  相似文献   

10.
Genetic Control of Adh Expression in DROSOPHILA MELANOGASTER   总被引:5,自引:4,他引:1  
Natural variants displaying different levels of expression of the gene for alcohol dehydrogenase (Adh) were subjected to genetic mapping experiments. The strains studied carry one of the two common electrophoretic forms of the enzyme. The difference among Adh-fast strains appears to be due to multiple loci with trans-acting effects. Differences among Adh-slow strains are due to modifiers or quantitative sites located very close to the structural gene (less than 0.05 map unit) or part of it. The modifiers detected in the Adhs strains seem to operate only on the structural allele in the cis-position.—A modifier that affects the ratio of ADH levels in larvae and adults was also detected in the Adhs strains. This modifier is also closely linked to Adh and is cis-acting.  相似文献   

11.
The alcohol dehydrogenase genes of cotton   总被引:2,自引:0,他引:2  
  相似文献   

12.
《遗传学报》2021,48(11):961-971
In plants, transposable element (TE)-triggered mutants are important resources for functional genomic studies. However, conventional approaches for genome-wide identification of TE insertion sites are costly and laborious. This study developed a novel, rapid, and high-throughput TE insertion site identification workflow based on next-generation sequencing and named it Transposable Element Amplicon Sequencing (TEAseq). Using TEAseq, we systemically profiled the Dissociation (Ds) insertion sites in 1606 independent Ds insertional mutants in advanced backcross generation using K17 as background. The Ac-containing individuals were excluded for getting rid of the potential somatic insertions. We characterized 35,696 germinal Ds insertions tagging 10,323 genes, representing approximately 23.3% of the total genes in the maize genome. The insertion sites were presented in chromosomal hotspots around the ancestral Ds loci, and insertions occurred preferentially in gene body regions. Furthermore, we mapped a loss-of-function AGL2 gene using bulked segregant RNA-sequencing assay and proved that AGL2 is essential for seed development. We additionally established an open-access database named MEILAM for easy access to Ds insertional mutations. Overall, our results have provided an efficient workflow for TE insertion identification and rich sequence-indexed mutant resources for maize functional genomic studies.  相似文献   

13.
A cis acting regulatory region has previously been identified 300-500 bp upstream of the Drosophila glue protein gene, Sgs-4. The functional capabilities of this region have now been examined by fusing it to the Drosophila Adh gene and determining the pattern of expression from the fused construct after transformation. The results show that the Sgs-4 sequences between −150 and −568 are able to direct Adh expression in late third-instar salivary glands, the appropriate tissue and timing for Sgs-4 expression. In addition, the Sgs-4 sequence elevates Adh expression in the anterior midgut and fat body, despite the fact that Sgs-4 is not normally expressed there. All three regulatory activities, tissue specificity, timing and enhancement, show the positional flexibility of enhancer elements. In addition, the Sgs-4 and Adh regulatory elements combine to direct expression in novel spatial/temporal combinations in which neither would normally be expressed.  相似文献   

14.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

15.
16.
Summary Treatment of tomato seeds with ethyl methanesulphonate (EMS) followed by allyl alcohol selection of M2 seeds has led to the identification of one plant (B15-1) heterozygous for an alcohol dehydrogenase (Adh) null mutation. Genetic analysis and expression studies indicated that the mutation corresponded to the structural gene of the Adh-1 locus on chromosome 4. Homozygous Adh-1 null mutants lacked ADH-1 activity in both pollen and seeds. Using an antiserum directed against ADH from Arabidopsis thaliana, which crossreacts with ADH-1 and ADH-2 proteins from tomato, no ADH-1 protein was detected in seeds of the null mutant. Northern blot analysis showed that Adh-1 mRNA was synthesized at wild-type levels in immature seeds of the null mutant, but dropped to 25% in mature seeds. Expression of the Adh-2 gene on chromosome 6 was unaffected. The potential use of the Adh-1 null mutant in selecting rare transposon insertion mutations in a cross with mutable Adh-1 + tomato lines is discussed.  相似文献   

17.

Key message

Diploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds.

Abstract

As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences. To study gene function, we examined transposon-tagged mutant strategies in model populations for both species, Fragaria vesca and Solanum tuberosum Group Phureja, using the same Activation/Dissociation (Ac/Ds) construct. Early somatic transposition during tissue culture occurred at a frequency of 18.5 % in strawberry but not in potato transformants. Green fluorescent protein under a monocot promoter was a more reliable selectable marker in strawberry compared to potato. BASTA (gluphosinate herbicide) resistance served as an effective selectable marker for both species (80 and 85 % reliable in strawberry and potato, respectively), although the effective concentration differed (0.5 % for strawberry and 0.03 % for potato). Transposons preferentially reinserted within genes (exons and introns) in both species. Real-time quantitative PCR revealed enhanced gene expression (670 and 298-fold expression compared to wild type in petiole and leaf tissue, respectively) for an activation tagged strawberry mutant with Ds inserted about 0.6 kb upstream from a gene coding for an epidermis-specific secreted glycoprotein EP1. Our data also suggested that endopolyploid (diploid) cells occurring in leaf explants of monoploid potato were the favored targets of T-DNA integration during transformation. Mutants obtained in these studies provide a useful resource for future genetic studies.  相似文献   

18.
An alcohol dehydrogenase (ADH) null mutant of Drosophila melanogaster (AdhnLA405) originally recovered following X-ray irradiation of mature sperm (Aaron, 979) is analyzed by Southern blotting, Western blotting, and DNA sequencing. The genetic, immunologic, and nucleic acid sequence data are consistent with the hypothesis that a cross-over event, independent of X-irradiation, between parental chromosomes is responsible for the ADH null phenotype of AdhnLA405. By DNA-sequence analysis we show that molecular cloning of this locus (i.e., propagation in prokaryotic hosts) apparently does not introduce any spurious changes (substitutions, additions, deletions, or rearrangements) within the DNA.  相似文献   

19.
20.
Alcohol dehydrogenase (ADH) isozymes in annual sunflowers (Helianthus annuus) are dimers whose subunits are produced by two genes, Adh 1 and Adh 2 .The codominant F and S alleles of Adh 1 produce the slower-migrating set of three isozymes. The faster-migrating set of three isozymes is controlled by Adh 2 , which also has at least two alleles, F and S. Hybridization experiments indicated that the Adh 2 alleles segregate in expected Mendelian fashion and that Adh 1 and Adh 2 are not linked. A third common 1-locus allele is designated early (E) because when homozygous it results in a blank at the 1FF isozyme position in mature seeds, but in developing seeds produces a normal-appearing band at the 1FF position. Hybridization studies showed that the early alleles segregated normally. Correlation between genotype and presence or absence of isozymes electrophoretically intermediate between those of Adh 1 and Adh 2 suggests that four intergenic isozymes may be formed as a result of dimerization of the four basic subunits. Studies of zymograms of developing seeds suggest that the remaining but inconstant zymogram bands are mature seed isozymes which have altered charges during early morphogenesis and thus are developmental artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号