首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical associations of Zn, Pb, Cu, Co and Cd were determined using a sequential extraction procedure in sediments colonised by S. maritima in three salt marshes within the Tagus estuary: Rosário, Corroios and Pancas. Concentrations of these metals were also analysed in above- and belowground parts of Spartina maritima, as well as in sediments colonised by the plant. The highest metal concentrations in sediments were found in the marshes near the industrial and urban areas, whereas metal concentrations in plants were not significantly different among sites. This was thought to be a consequence of differences observed in metal bioavailability: Metals in Pancas, the least polluted location, were largely associated to easily accessible fractions for plant uptake, probably as a result of low organic matter content and high sandy fraction in sediments. S. maritima was able to induce the concentration of metals between its roots in the three salt marshes. The results obtained in this study indicate that S. maritima could be useful to induce phytostabilisation of metals in sediments, although the effectiveness to modify chemical associations is highly dependent on existing sediment parameters, and thus different results could be obtained depending on site characteristics. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

2.
Many authors have referred to the important role of vegetation in the consolidation of salt marsh sediments, but experiments previously carried out by us have shown results that do not always agree with these statements. In other words, the type of salt marsh surface coverage is not the main factor that contributes to the consolidation of sediments. To test this hypothesis different Portuguese salt marsh stations (species/unvegetated areas) from two sites, Tagus estuary (Corroios and Pancas) and Ria de Aveiro (Barra and Verdemilho), were compared to evaluate their influence on suspended matter deposition on the salt marsh surface. A short-term sedimentation study was performed within stands of Spartina maritima, Halimione portulacoides, Sarcocornia perennis subsp. perennis and unvegetated areas, by analysing the deposition of sediment material on nylon filters anchored to the marsh surface. Numerical results obtained from hydrodynamic models coupled to a Lagrangean module implemented for the Ria de Aveiro and the Tagus Estuary, namely the root-mean square velocity (V rms) and residual velocity of tides, were also used. Average sedimentation rates (mean value between the different surface cover in a salt marsh) showed a seasonal trend more or less defined but with significantly different values between sites and salt marshes. Sedimentation rates varied between marshes: there are significant differences between Pancas and the other three marshes, but only significant differences in sedimentation rates between Spartina and Sarcocornia. Despite the important role of vegetation in the consolidation of salt marsh sediments, our results suggest that, the position of stations and related abiotic conditions in the salt marshes are determining factors of variation to take into account in the studies related with the stabilization and survival of salt marshes facing sea level rise. Handling editor: P. Viaroli  相似文献   

3.
Short-term sediment deposition was studied at four salt marsh areas in the Tagus estuary. In areas covered with Sarcocornia perennis, Sarcocornia fruticosa, Halimione portulacoides and Spartina maritima and also in the non-vegetated areas, sedimentation was measured as the monthly accumulation of sediments on nylon filters anchored on the soil surface, from August 2000 to May 2001. Our experiments were used also to determine the influence of the different plant species in vertical accretion rates. Short-term sedimentation rates (from 2.8 to 272.3 g m−2 d−1) did show significant differences when the four salt marshes studied in the Tagus estuary were compared to each others. Salt marshes closer to the sediment sources had higher sedimentation rates. Our results suggest that the salt marsh type and surface cover may provide small-scale variations in sedimentation and also that sediment deposition values do change according to the position of the different plant species within the salt marsh. Sedimentation is an essential factor in salt marsh vertical accretion studies and our investigation may provide support to help forecast the adaptative response of the Tagus estuary wetlands to future sea level rise.  相似文献   

4.
New data of aboveground biomass and production of four angiosperms over a 12 month period for the Cantabrian Sea salt marshes (Bay of Biscay, N. Spain) are presented. Based on harvest methods, maximum aboveground total biomass values for Spartina maritima (Curtis) Fernald, Spartina alterniflora Loisel, Salicornia ramosissima J. Woods and Halimione portulacoides (L.) Aellen were 628, 1109, 480 and 1267 gm-2, respectively. We conclude that although a slight latitudinal gradient in biomass is revealed in the data compiled with reference to some of the species studied, more work is neccesary in order to assess the potential productivity of these ecosystems on the coasts of Europe and/or to make comparisons with salt marshes of the American coasts. Annual net aerial primary production estimates using Smalley's method were: 296, 1160, 486 and 952 gm-2yr-1, for Spartina maritima, Spartina alterniflora, Salicornia ramosissima and Halimione portulacoides, respectively. These results together with turnover rate estimates point to the lack of vigour of the native S. maritima, while the exotic S. alterniflora, which seems to be spreading along the Cantabrian estuaries, behaves like a veritable pionner throughout the low marshes in this region.  相似文献   

5.
During the last decades the Mondego estuary has been under severe ecological stress mainly caused by eutrophication. In this salt march system, Spartina maritima covers about 10.5 ha of the intertidal areas. The objective of the present study was to evaluate the effect of Spartina maritima marshes on the dynamics of phosphorus (P) binding in the surface sediment. We compare phosphate and oxygen fluxes, P-adsorption capacity, phosphate concentrations and total amount, and the extractable P forms in the upper 20 cm of sediment in vegetated sediment with adjacent mudflats without vegetation. Sediment pore-water profiles followed a clear trend, with lower P concentrations in more superficial layers, and increasing with depth. The vegetated mudflats presented lower concentrations of dissolved inorganic phosphorus than adjacent bare bottom mudflats, lower phosphate total amount, as well as higher P-adsorption capacity. Results from the extraction procedure show that the superficial layers are the most important for estuarine phosphorus dynamics, since maximum concentrations of labile P pools are present here. In contrast, higher proportions of refractory P pool are found in deeper layers. Spartina marsh sediments had less total P, less iron bound P, and less exchangeable P than adjacent bare bottom mudflats. Also the pool of loosely sorbed P is lower in the Spartina marsh. Phosphate regeneration from the sediment to the overlying water was only 11.8 kg ha−1 year−1 in vegetated sediment while 25.8 kg ha−1 year−1 in the bare mud flat. Plant uptake for growth combined with an enhanced P-adsorption capacity of the sediment, may explain these differences. Therefore, Spartina marshes are very important agents in the sedimentary P cycle worldwide, and can be considered a useful management tool in estuarine ecosystem recovery efforts.  相似文献   

6.
Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during 1 year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year−1. Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m−2 year−1, 55 g N m−2 year−1, and 13 g P m−2 year−1.  相似文献   

7.
Narrow fringing salt marshes dominated by Spartina alterniflora occur naturally along estuarine shorelines and provide many of the same ecological functions as more extensive marshes. These fringing salt marshes are sometimes incorporated into shoreline stabilization efforts. We obtained data on elevation, salinity, sediment characteristics, vegetation and fish utilization at three study sites containing both natural fringing marshes and nearby restored marshes located landward of a stone sill constructed for shoreline stabilization. During the study, sediment accretion rates in the restored marshes were approximately 1.5- to 2-fold greater than those recorded in the natural marshes. Natural fringing marsh sediments were predominantly sandy with a mean organic matter content ranging between 1.5 and 6.0%. Average S. alterniflora stem density in natural marshes ranged between 130 and 222 stems m−2, while mean maximum stem height exceeded 64 cm. After 3 years, one of the three restored marshes (NCMM) achieved S. alterniflora stem densities equivalent to that of the natural fringing marshes, while percentage cover and maximum stem heights were significantly greater in the natural than in the restored marshes at all sites. There was no significant difference in the mean number of fish, crabs or shrimp captured with fyke nets between the natural and restored marshes, and only the abundance of Palaemonetes vulgaris (grass shrimp) was significantly greater in the natural marshes than in the restored ones. Mean numbers of fish caught per 5 m of marsh front were similar to those reported in the literature from marshes adjacent to tidal creeks and channels, and ranged between 509 and 634 fish net−1. Most of the field data and some of the sample analyses were obtained by volunteers as they contributed 223 h of the total 300 h spent collecting data from three sites in one season. The use of fyke nets required twice as many man-hours as any other single task. Vegetation and sediment parameters were sensitive indicators of marsh restoration success, and volunteers were capable of contributing a significant portion of the labor needed to collect these parameters. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

8.
Nutrient limitation and plant species composition in temperate salt marshes   总被引:3,自引:0,他引:3  
Addition of inorganic nitrogen, phosphorus and potassium in a factorial design in two ungrazed Wadden-Sea salt marshes at low and high elevations showed that nitrogen was the limiting nutrient. No effects of nutrient addition were detected in the 1st year, probably due to a considerable rainfall deficit during the growing season. In the 2nd year, which was more humid, only nitrogen addition caused significant effects in both the low salt marsh dominated by Puccinellia maritima and the high marsh dominated by Festuca rubra. No two-way or three-way interactions with phosphorus or potassium were found. In the low marsh, nitrogen addition had a negative effect on the biomass of Puccinellia, but a positive effect on the biomass of Suaeda maritima and on the total above-ground biomass. Puccinellia was replaced by Suaeda after nitrogen addition, due to shading. In the high salt marsh, no significant effects of fertilizer application on total above-ground biomass were found, due to the weak response of the dominant species Festuca rubra, which accounted for 95% of total biomass. The biomass of Spergularia maritima increased, however, as a response to nitrogen addition.The shoot length of Festuca was positively affected by nitrogen fertilization. It is suggested that stands of Festuca reached maximal biomass at the study site without fertilization and that its growth was probably limited by self-shading. Received: 22 September 1996 / Accepted: 5 April 1997  相似文献   

9.
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.  相似文献   

10.
The abundance of pelagic invertebrate predators in relation to turbidity and depth gradients in Lake Hiidenvesi (southern Finland) were studied. In the shallow (<5 m) and the most turbid (up to 75 NTU) part of the lake, the community of invertebrate predators consisted of cyclopoid copepods (max biomass >500 μg dw l−1) and Leptodora kindtiii (Focke) (17 μg dw l−1), while in the less turbid (10–40 NTU) stratifying area Chaoborus flavicans (Meigen) dominated (max 146 μg dw l−1). In the temporarily stratifying and moderately turbid basin Chaoborus and small-bodied invertebrate predators co-existed. Mysis relicta (Lovén) occurred only in the stratifying area (max 15 μg dw l−1). The results suggested that both water depth and turbidity contributed to the community structure of Chaoborus flavicans. Depth great enough for stratification was of special importance and its effect was amplified by elevated turbidity, while high turbidity alone could not maintain chaoborid populations. Mysis relicta also requires a hypolimnetic refuge but is more sensitive to low oxygen concentrations and may therefore be forced to the epilimnion where it is vulnerable to fish predation. Cyclopoids as rapid swimmers can take advantage at elevated turbidity levels and coexist in high biomass with fish even in shallow water. Leptodora kindtii can form high biomass despite planktivorous fish providing that turbidity exceeds 20 NTU. The results demonstrated that depth and water turbidity can strongly regulate the abundance and species composition of invertebrate predators. These factors must thus be taken into account when applying food web management, which aims to reduce phytoplankton biomass by depressing planktivorous fish.  相似文献   

11.
This study provides some results about microbial activity in salt marsh sediments. Microbial activity was determined by profiling extracellular enzyme activities in three Tagus estuary marshes and in two sediments horizons: surface layer (0–2 cm) and depth (8–10 cm). Five enzymatic activities were examined (β-glucosidase, cellulase, alkaline phosphatase, potential nitrification and nitrate reductase). All extracellular enzymatic activities were highest in the surface layer and decreased with depth. β-glucosidase and alkaline phosphatase prevailed both in surface sediments (1150 and 1200 ηmol h−1 g−1, respectively) and in deeper sediments (150 and 200 ηmol h−1 g−1, respectively). Microbial activities differed significantly between salt marshes. The marsh location in the estuary seemed to contribute to these differences: marshes located in the proximity of urbanised and industrial areas had higher microbial activities.  相似文献   

12.
The sequestration and recycling of biogenic silica (BSi) in freshwater tidal marshes was modelled through the combination of short-term year round sediment trap data with a long-term sedimentation model, MARSED. The modelling was implemented through the complete evolution from a young rapidly rising marsh to a marsh with an elevation close to mean high water. BSi in imported suspended matter was higher in summer (10.9 mg BSi g−1 sediment) than winter (7.6 mg BSi g−1 sediment). However, the deposition of BSi on the marsh surface was higher in winter compared to summer, due to the higher sedimentation rates. Deposition of BSi was correlated to the suspended matter deposition. In the old marsh, yearly about 40 g BSi m−2 was deposited, while in the young marsh deposition could rise up to 300 g m−2. Young marshes retained up to 85% of the imported biogenic silica. Recycling efficiency (60%) increased drastically for older marshes. The study shows that marshes act as important sinks for BSi along estuaries. The recycling of the imported BSi to DSi in summer and spring is most likely an essential factor in the buffering role of tidal marshes for estuarine DSi concentrations.  相似文献   

13.
Salt marshes are ecosystems subjected to a variety of environmental stresses like high salinity, water deficit, intense radiation or high temperatures. Field measurements were conduced in two halophyte species, Atriplex portulacoides L. and Limoniastrum monopetalum L., in the Reserva Natural do Sapal de Castro Marim, to compare their physiological response, i.e., water potential (ψ), net photosynthetic rate (A), stomatal conductance (gs) under natural conditions. Both species demonstrated marked variations in ψ throughout the year, with very low values in the summer, the period of higher salinity, drought and temperature. Deficit water potential (Δψ = ψmidday − ψpredawn) was lower in the summer than in other seasons in A. portulacoides but not in L. monopetalum. The highest values for A and gs in L. monopetalum were observed in autumn and for A. portulacoides in winter, presenting both lowest values in spring and summer. Amax was particularly high for L. monopetalum than for A. portulacoides in summer and autumn, despite gsmax was similar in both species. Diurnal pattern of A and gs were similar in both species, with higher values in the morning, decreasing throughout the day.  相似文献   

14.
Cartaxana  P.  Catarino  F. 《Plant Ecology》2002,159(1):95-102
Seasonalvariation in leaf nitrogen of mature green and senescent leaves and nitrogenresorption efficiency in three plants (Spartina maritima, Halimioneportulacoides and Arthrocnemum perenne) of aTagus estuary salt marsh are reported. Total nitrogen concentrations in greenand senescent leaves were higher during winter (December and March). Soilinorganic nitrogen availability showed an opposite pattern with higherconcentrations during summer (June and September) when total leaf biomass washigher. Nitrogen resorption efficiency ranged between 31 and 76% andH. portulacoides was the plant that better minimizednitrogen loss by this process. Nitrogen resorption occurred mainly from thesoluble protein pool, although other fractions must have been broken down duringthe resorption process. No significant seasonal variation in nitrogen resorptionefficiency and no relation to leaf total nitrogen or soil nitrogen availabilitywere found. This suggests that the efficiency of the resorption process is notdetermined by the plant nitrogen status nor by the availability of the nutrientin the soil. Nevertheless, resorption from senescing leaves may play animportant role in the nitrogen dynamics of salt marsh plants and reduce thenitrogen requirements for plant growth.  相似文献   

15.
Geomorphology, vegetation and tidal fluxes are usually identified as the factors introducing variation in the flushing of particulate organic matter (POM) from tidal marshes to adjacent waters. Such variables may, however, be insufficient to explain export characteristics in marshes inhabited by ecosystem engineers that can alter the quantity and quality of POM on the marsh surface that is subject to tidal flushing. In this study we evaluated the balance between transfer of buried sedimentary organic carbon (C) to the marsh surface due to crab excavation (measured from the mounds of sediment excavated from burrows) and outputs of C from the surface due to sediment deposition within crab burrows (estimated from sediment deposited within PVC burrow mimics), in a Southwestern Atlantic salt marsh supporting dense (approximately 70 ind m−2) populations of the crab Chasmagnathus granulatus. C excavation by crabs was much greater than deposition of C within crab burrow mimics. Per area unit estimates of the balance between these two processes indicated that crabs excavated 5.98 g m−2 d−1 and 4.80 mg m−2 d−1 of total and readily (10 d) labile C, respectively. However, sediments excavated by crabs showed a significantly lower content of both total and readily-labile C than sediment collected in burrow mimics. This indicates that ecosystem engineering by burrowing crabs causes a net decrease in the concentration of C in the superficial sediment layers and, thus, an overall decrease in the amount of C that can be washed out of the marsh by tidal action. Incorporating the in situ activities of ecosystem engineers in models of marsh export should enhance understanding of the function of marshes in estuarine ecosystems.  相似文献   

16.
Nitrogen cycling in Louisiana Gulf Coast brackish marshes   总被引:1,自引:0,他引:1  
Nitrogen fixation and nitrogen accumulation were measured in a Louisiana Spartina patens brackish marsh. Using the acetylene reduction technique calibrated with direct 15N2 assimilation, an equivalent of 90.0 µ g N g–1 yr–1 was fixed. Fixation was greater in the summer months and in the upper portion of the soil profile. Extractable ammonium increased with depth and was negatively correlated with ethylene production. Average ammonium concentration in the sediment was 39 µg NH4 +-N g–1 sediment. Cesium-137 dating of the soil profile showed the marsh was vertically accreting at a rate of 0.60 cm yr–1. Calculations using vertical accretion rate, bulk density, and total nitrogen content of sediment indicate that the marshes are accumumating 7.2 g Nm–2 yr–1 thus serving as a major nitrogen sink. Measured nitrogen fluxes were incorporated with existing flux measurement in developing a nitrogen budget for the marsh.  相似文献   

17.
D. H. Dalby 《Plant Ecology》1985,61(1-3):45-54
Details are given of a preliminary study of salt marshes near Sullom Voe, Mainland, Shetland, using 50×50 cm quadrats placed systematically along transects. Computer-generated clusters are shown to match well against generally accepted syntaxa, whilst high-similarity clusters in certain alliances possess internal structure related to dominance and to effects of freshwater irrigation. The syntaxa provisionally identified are the Eleocharion uniglumis, Armerion maritimae, Puccinellion maritimae, and grazed cliff top grasslands showing affinity to the Puccinellio-Spergularion salinae. Computer clusters with Puccinellia maritima and much Fucus muscoides are associated with active pioneer grass growth and with slumping and erosion on wet marshes, whilst more species-rich clusters reflect a loss of vigour in Puccinellia maritima at higher elevations. Drier stonier marshes also display depositional and erosional features, the former being associated with active Puccinellia maritima growth at lower levels on the marsh. It is suggested that most of these processes involve the recycling of local marsh sediment material.Nomenclature follows Clapham et al. (1981) for the angiosperms, Parke & Dixon (1976) for the algae, and Adam (1981) for plant communities.My thanks are due to the Sheland Oil Terminal Environmental Advisory Group for allowing me to make use of data obtained during contract work for them at Sullom Voe, and to the Nature Conservancy Council and Institute of Terrestrial Ecology for permission to refer to their report on Shetland cliffs and salt marshes. Thanks are due to the Central Research Fund of the University of London and to the Department of Pure and Applied Biology, Imperial College for financial assistance. Computing was done at the Imperial College forputer Centre. I would also like to thank R. G. Davies for lending me some of his FORTRAN IV programs, and my wife for assistance with the field work.  相似文献   

18.
Liao CZ  Luo YQ  Fang CM  Chen JK  Li B 《Oecologia》2008,156(3):589-600
Past studies have focused primarily on the effects of invasive plants on litter decomposition at soil surfaces. In natural ecosystems, however, considerable amounts of litter may be at aerial and belowground positions. This study was designed to examine the effects of Spartina alterniflora invasion on the pool sizes and decomposition of aerial, surficial, and belowground litter in coastal marshlands, the Yangtze Estuary, which were originally occupied by two native species, Scirpus mariqueter and Phragmites australis. We collected aerial and surficial litter of the three species once a month and belowground litter once every 2 months. We used the litterbag method to quantify litter decomposition at the aerial, surficial and belowground positions for the three species. Yearly averaged litter mass in the Spartina stands was 1.99 kg m−2; this was 250 and 22.8% higher than that in the Scirpus (0.57 kg m−2) and Phragmites (1.62 kg m−2) stands, respectively. The litter in the Spartina stands was primarily distributed in the air (45%) and belowground (48%), while Scirpus and Phragmites litter was mainly allocated to belowground positions (85 and 59%, respectively). The averaged decomposition rates of aerial, surficial, and belowground litter were 0.82, 1.83, and 1.27 year−1 for Spartina, respectively; these were 52, 62 and 69% of those for Scirpus litter at corresponding positions and 158, 144 and 78% of those for Phragmites litter, respectively. The differences in decomposition rates between Spartina and the two native species were largely due to differences in litter quality among the three species, particularly for the belowground litter. The absolute amount of nitrogen increased during the decomposition of Spartina stem, sheath and root litter, while the amount of nitrogen in Scirpus and Phragmites litter declined during decomposition for all tissue types. Our results suggest that Spartina invasion altered the carbon and nitrogen cycling in the coastal marshlands of China.  相似文献   

19.
20.
Floating marshes occur over 70% of the western Terrebonne Basin, Louisiana, USA, freshwater coastal wetlands. They are of several types: A free-floating thick-mat (45–60 cm) marsh dominated by Panicum hemitomon and Sagittaria lancifolia; a thick mat marsh dominated by Panicum hemitomon and Sagittaria lancifolia that floats part of the year, but whose vertical floating range is damped compared to adjacent water; and an irregularly-floating thin mat (< 30 cm) dominated by Eleocharis spp. in the spring and Ludwigia leptocarpa and Bidens laevis in the summer and fall. Floating mats must be almost entirely organic in order to be buoyant enough to float. The western Terrebonne wetlands receive large winter/spring supplies of suspended sediments from the Atchafalaya River. Even though sediment concentrations in the adjacent bayou are as high as 100 mg l–1, the Panicum hemitomon/Sagittaria lancifolia free-floating marsh probably receives no over-surface sediments since it floats continuously. The bulk density data of the damped-floating marsh, however, suggest some mineral sediment input, probably during winter when this marsh is submerged. These two types of floating marsh could not have developed in the present sediment regime of the Atchafalaya River, but as long as they remain floating can continue to exist. Thin floating mats are found in areas receiving the least sediment (<20 mg 1–1 suspended sediment concentration in adjacent bayous). This low sediment environment probably made possible their formation within the past 20 years. They may represent a transitional stage in mat succession from (1) existing thick-mat floating marsh to a degrading floating marsh, or (2) a floating marsh developing in shallow open water.Corresponding editor: D. Whigham  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号