首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide-binding oligomerization domain protein 1 (Nod1) is an intracellular protein involved in recognition of the bacterial component peptidoglycan. This recognition event induces a host defense response to eliminate invading pathogens. The genetic variation of Nod1 has been linked to several inflammatory diseases and allergies, which are strongly affected by environmental factors. We have found that many of the bacteria that contain DAP-type peptidoglycan release Nod1 ligands into the environment. However, the structures of natural Nod1 ligands in the environment are not well understood. Herein, we report the isolation and structural elucidation of natural human Nod1 (hNod1) ligands from the Escherichia coli K-12 culture supernatant. The supernatant was fractionated with reversed-phase high performance liquid chromatography (RP-HPLC), resulting in the isolation of several hNod1 stimulatory fractions. Structural characterization studies demonstrated that the molecular structure of the most active fraction was the native hNod1 ligand GlcNAc-(β1–4)-(anhydro)MurNAc-l-Ala-γ-d-Glu-meso-DAP. We also found other peptidoglycan fragments using the 7-(diethylamino)coumarin-3-carbonyl labeling method to enhance sensitivity in mass spectroscopy studies. These results suggested that DAP-containing bacteria release certain hNod1 ligands to the environment, and these ligands would accumulate in the environment and regulate the immune system through Nod1.  相似文献   

2.
Nod1 is an intracellular pattern recognition molecule activated following bacterial infection, which senses a specific muropeptide (l-Ala-d-Glu-meso-DAP (diaminopimelic acid); "Tri(DAP)") from peptidoglycan. Here we investigated the molecular basis of Tri(DAP) sensing by human (h) Nod1. Our results identified the domain responsible for Tri(DAP) detection in the center of the concave surface of hNod1 leucine-rich repeat domain. Amino acid residues critical for sensing define a contiguous surface patch that is largely conserved in Nod1 proteins from different species. Accordingly, the distinct specificities of human versus murine Nod1 toward muropeptide detection were also found to lie in this central cleft. Several splicing variants of Nod1 lacking repeats 7-9 have been characterized recently, the relative balance of which is thought to correlate with the onset of asthma or inflammatory bowel disease. We demonstrated that these isoforms failed to transduce NF-kappaB activation upon muropeptide stimulation. This study provided insights into the molecular mechanisms responsible for the detection of bacterial peptidoglycan by Nod1 and suggested that defects in Nod1-dependent peptidoglycan sensing may contribute to elicit certain inflammatory disorders.  相似文献   

3.
Nod1 is a member of the NLR/Nod/CATERPILLER family. It acts as a sensor for intracellular bacteria by recognizing specific glycopeptides derived from peptidoglycan. Nod1 activation mediates distinct cellular responses including activation of MAP kinases, IL-8 release, apoptosis and suppression of several estrogen-dependent responses in MCF-7 cells. Here we have extended these studies by identifying key regulatory steps in Nod1-dependent signaling pathways. We provide multiple lines of data showing that Nod1-dependent apoptosis is a caspase 8-mediated event and that apoptosis requires RIP2. In contrast, several lines of evidence show that Nod1-dependent JNK activation and IL-8 production did not require the presence of caspase 8 but required activation of TAK1 as well as RIP2. Thus, we have identified several key control points that lie downstream of Nod1. This work provides the basis for further studies of the biological significance and regulation of the Nod1 pathway.  相似文献   

4.
Successful pathogens have evolved to evade innate immune recognition of microbial molecules by pattern recognition receptors (PRR), which control microbial growth in host tissues. Upon Legionella pneumophila infection of macrophages, the cytosolic PRR Nod1 recognizes anhydro-disaccharide-tetrapeptide (anhDSTP) generated by soluble lytic transglycosylase (SltL), the predominant bacterial peptidoglycan degrading enzyme, to activate NF-κB-dependent innate immune responses. We show that L.?pneumophila periplasmic protein EnhC, which is uniquely required for bacterial replication within macrophages, interferes with SltL to lower anhDSTP production. L.?pneumophila mutant strains lacking EnhC (ΔenhC) increase Nod1-dependent NF-κB activation in host cells, while reducing SltL activity in?a ΔenhC strain restores intracellular bacterial growth. Further, L.?pneumophila ΔenhC is specifically rescued in Nod1- but not Nod2-deficient macrophages, arguing that EnhC facilitates evasion from Nod1 recognition. These results indicate that?a bacterial pathogen regulates peptidoglycan degradation to control the production of PRR ligands and evade innate immune recognition.  相似文献   

5.
Nod2 activates the NF-kappaB pathway following intracellular stimulation by bacterial products. Recently, mutations in Nod2 have been shown to be associated with Crohn's disease, suggesting a role for bacteria-host interactions in the etiology of this disorder. We show here that Nod2 is a general sensor of peptidoglycan through the recognition of muramyl dipeptide (MDP), the minimal bioactive peptidoglycan motif common to all bacteria. Moreover, the 3020insC frameshift mutation, the most frequent Nod2 variant associated with Crohn's disease patients, fully abrogates Nod2-dependent detection of peptidoglycan and MDP. Together, these results impact on the understanding of Crohn's disease development. Additionally, the characterization of Nod2 as the first pathogen-recognition molecule that detects MDP will help to unravel the well known biological activities of this immunomodulatory compound.  相似文献   

6.
Elucidating factors regulating Crohn's disease-associated nucleotide-binding oligomerization domain 2 (Nod2) responses is critical to understanding the mechanisms of intestinal immune homeostasis. Stimulation of primary monocyte-derived macrophages by muramyl dipeptide (MDP), a component of bacterial peptidoglycan and specific Nod2 ligand, produces cytokines, including IL-1β. We found that IL-1β blockade profoundly inhibits MDP-induced cytokine production in human monocyte-derived macrophages, demonstrating a key role for IL-1β autocrine secretion in Nod2-mediated responses. Importantly, although MAPK activation has previously been attributed directly to Nod2 signaling, we determined that the IL-1β autocrine loop is responsible for the majority of MDP-induced MAPK activation. Because the critical effects of IL-1β autocrine secretion on MAPK activation are observed as early as 10 min after Nod2 stimulation, we hypothesized that secretion of IL-1β from preexisting intracellular pro-IL-1β stores is necessary for optimal MDP-mediated cytokine induction. Consistently, we detected IL-1β secretion within 10 min of MDP treatment. Moreover, caspase-1 inhibition significantly attenuates MDP-mediated early MAPK activation. Importantly, selective JNK/p38 activation is sufficient to rescue the decreased cytokine secretion during Nod2 stimulation in the absence of autocrine IL-1β. Finally, we found that the IL-1β autocrine loop significantly enhances responses by a broad range of pattern recognition receptors. Taken together, MDP stimulation activates Nod2 to process and release preexisting pro-IL-1β stores in a caspase-1-dependent fashion; this secreted IL-1β, in turn, contributes to the majority of MDP-initiated MAPK activation and leads to subsequent cytokine secretion. Our findings clarify mechanisms of IL-1β contributions to Nod2 responses and elucidate the dominant role of IL-1β in MDP-initiated MAPK and cytokine secretion.  相似文献   

7.
NOD2/CARD15 is the first characterized susceptibility gene in Crohn disease. The Nod2 1007fs (Nod2fs) frameshift mutation is the most prevalent in Crohn disease patients. Muramyl dipeptide from bacterial peptidoglycan is the minimal motif detected by Nod2 but not by Nod2fs. Here we investigated the response of human peripheral blood mononuclear cells (PBMCs) from Crohn disease patients not only to muramyl dipeptide but also to several other muramyl peptides. Most unexpectedly, we observed that patients homozygous for the Nod2fs mutation were totally unresponsive to MurNAc-L-Ala-D-Glu-meso-diaminopimelic acid (DAP) (M-Tri(DAP)), the specific agonist of Nod1, and to Gram-negative bacterial peptidoglycan. In contrast, PBMCs from a patient homozygous for the Nod2 R702W mutation, also associated with Crohn disease, displayed normal response to Gram-negative bacterial peptidoglycan. In addition, the blockage of the Nod1/M-Tri(DAP) pathway could be partially overcome by co-stimulation with the Toll-like receptors agonists lipoteichoic acid or lipopolysaccharide. Investigation into the mechanism of this finding revealed that Nod2fs did not act as a dominant-negative molecule for the Nod1/M-Tri(DAP) pathway, implying that the blockage is dependent upon the expression or activity of other factors. We demonstrated that PBMCs from Nod2fs patients express high levels of the peptidoglycan recognition protein S, a secreted protein known to interact with muramyl peptides. We proposed that through a scavenger function, peptidoglycan recognition protein S may dampen M-Tri(DAP)-dependent responses in Nod2fs patients. Together, our results identified a cross-talk between the Nod1 and Nod2 pathways and suggested that down-regulation of Nod1/M-Tri(DAP) pathway may be associated with Crohn disease.  相似文献   

8.
Nucleotide-binding oligomerization domain 2 (Nod2) is a cytosolic sensor for muramyl dipeptide, a component of bacterial peptidoglycan. In this study, we have examined whether Nod2 mediates the immune response of macrophages against Yersinia enterocolitica. Bone-marrow-derived macrophages (BMDMs) were isolated from WT and Nod2-deficient mice and were infected with various strains of Y. enterocolitica. ELISA showed that the production of IL-6 and TNF-α in BMDMs infected with Y. enterocolitica was not affected by the Nod2 deficiency. iNOS mRNA expression was induced in both WT and Nod2-deficienct BMDMs in response to Y. enterocolitica, beginning 2 h after infection. Nitric oxide (NO) production by Y. enterocolitica did not differ between WT and Nod2-deficient BMDMs. Western blot analysis revealed that Y. enterocolitica induces activation of NF-κB, p38, and ERK MAPK through a Nod2-independent pathway. Neither LDH release by Y. enterocolitica nor the phagocytic activity of the macrophages was altered by Nod2 deficiency. An in vivo experiment showed that bacterial clearance ability and production of IL-6 and KC in serum were comparable in WT and Nod2-deficient mice infected with Y. enterocolitica. These findings suggest that Nod2 may not be critical for initiating the innate immune response of macrophages against Yersinia infection.  相似文献   

9.
Dahiya Y  Pandey RK  Sodhi A 《PloS one》2011,6(11):e27828
Nod2 is a cytosolic pattern recognition receptor. It has been implicated in many inflammatory conditions. Its signaling has been suggested to modulate TLR responses in a variety of ways, yet little is known about the mechanistic details of the process. We show in this study that Nod2 knockdown mouse peritoneal macrophages secrete more IL1β than normal macrophages when stimulated with peptidoglycan (PGN). Muramyl dipeptide (MDP, a Nod2 ligand) + PGN co-stimulated macrophages have lower expression of IL1β than PGN (TLR2/1 ligand) stimulated macrophages. MDP co-stimulation have similar effects on Pam3CSK4 (synthetic TLR2/1 ligand) mediated IL1β expression suggesting that MDP mediated down regulating effects are receptor dependent and ligand independent. MDP mediated down regulation was specific for TLR2/1 signaling as MDP does not affect LPS (TLR4 ligand) or zymosan A (TLR2/6 ligand) mediated IL1β expression. Mechanistically, MDP exerts its down regulating effects by lowering PGN/Pam3CSK4 mediated nuclear cRel levels. Lower nuclear cRel level were observed to be because of enhanced transporting back rather than reduced nuclear translocation of cRel in MDP + PGN stimulated macrophages. These results demonstrate that Nod2 and TLR2/1 signaling pathways are independent and do not interact at the level of MAPK or NF-κB activation.  相似文献   

10.
Infection of epithelial cells by the intracellular pathogen, Chlamydia trachomatis, leads to activation of NF-kappaB and secretion of pro-inflammatory cytokines. We find that overexpression of a dominant-negative Nod1 or depletion of Nod1 by RNA interference inhibits partially the activation of NF-kappaB during chlamydial infection in vitro, suggesting that Nod1 can detect the presence of Chlamydia. In parallel, there is a larger increase in the expression of pro-inflammatory genes following Chlamydia infection when primary fibroblasts are isolated from wild-type mice than from Nod1-deficient mice. The Chlamydia genome encodes all the putative enzymes required for proteoglycan synthesis, but proteoglycan from Chlamydia has never been detected biochemically. Since Nod1 is a ubiquitous cytosolic receptor for peptidoglycan from Gram-negative bacteria, our results suggest that C. trachomatis and C. muridarum do in fact produce at least the rudimentary proteoglycan motif recognized by Nod1. Nonetheless, Nod1 deficiency has no effect on the efficiency of infection, the intensity of cytokine secretion, or pathology in vaginally infected mice, compared with wild-type controls. Similarly, Rip2, a downstream mediator of Nod1, Toll-like receptor (TLR)-2, and TLR4, increases only slightly the intensity of chlamydial infection in vivo and has a very mild effect on the immune response and pathology. Thus, Chlamydia may not produce sufficient peptidoglycan to stimulate Nod1-dependent pathways efficiently in infected animals, or other receptors of the innate immune system may compensate for the absence of Nod1 during Chlamydia infection in vivo.  相似文献   

11.
Airway infection by the Gram-positive pathogen Streptococcus pneumoniae (Sp) leads to recruitment of neutrophils but limited bacterial killing by these cells. Co-colonization by Sp and a Gram-negative species, Haemophilus influenzae (Hi), provides sufficient stimulus to induce neutrophil and complement-mediated clearance of Sp from the mucosal surface in a murine model. Products from Hi, but not Sp, also promote killing of Sp by ex vivo neutrophil-enriched peritoneal exudate cells. Here we identify the stimulus from Hi as its peptidoglycan. Enhancement of opsonophagocytic killing was facilitated by signaling through nucleotide-binding oligomerization domain-1 (Nod1), which is involved in recognition of gamma-D-glutamyl-meso-diaminopimelic acid (meso-DAP) contained in cell walls of Hi but not Sp. Neutrophils from mice treated with Hi or compounds containing meso-DAP, including synthetic peptidoglycan fragments, showed increased Sp killing in a Nod1-dependent manner. Moreover, Nod1(-/-) mice showed reduced Hi-induced clearance of Sp during co-colonization. These observations offer insight into mechanisms of microbial competition and demonstrate the importance of Nod1 in neutrophil-mediated clearance of bacteria in vivo.  相似文献   

12.
Innate immunity relies on the detection of microbial invaders by two distinct systems. One system comprises a family of membrane-bound receptors, termed the Toll-like receptors, while the other family, termed the nucleotide-binding site/leucine-rich repeat (NBS/LRR) proteins, consists of molecules that are found in the cytoplasmic compartment. These two detection systems recognize conserved molecular components of microbes including such structural motifs as lipopolysaccharide from the Gram-negative bacterial cell wall and peptidoglycan (PGN) found in the cell wall of both Gram-negative and Gram-positive bacteria. This review focuses on two members of the NBS/LRR family of proteins, Nod1 and Nod2. Recently, the microbial motifs sensed by these two molecules have been characterized. Both Nod1 and Nod2 recognize PGN, however, each requires distinct molecular motifs to attain sensing. Nod1 recognizes a naturally occurring muropeptide of PGN that presents a unique amino acid at its terminus called diaminopilemic acid (DAP). This amino acid is found mainly in the PGN of Gram-negative bacteria designating Nodl as a sensor of Gram-negative bacteria. In contrast, Nod2 can detect the minimal bioactive fragment of PGN, called muramyl dipeptide. Thus Nod2 is a general sensor of bacterial PGN. Since mutations in the gene encoding Nod2 were recently shown to be associated with the chronic inflammatory disease, Crohn's disease, these results are discussed in the context of how disrupting the interplay between host detection and bacterial aggression may lead to inflammatory diseases.  相似文献   

13.
A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling   总被引:5,自引:0,他引:5  
Nod2 is an intracellular sensor of a specific bacterial cell wall component, muramyl dipeptide, and activation of Nod2 stimulates an inflammatory response. Specific mutations of Nod2 have been associated with two inflammatory diseases, Crohn disease and Blau syndrome, and are thought to contribute to disease susceptibility through altering Nod2 signaling. Association of disease with inappropriate activation of Nod2 highlights the importance of proper regulation of Nod2 activity. However, little is known about specific regulation of the Nod2 pathway. We performed a biochemical screen to discover potential regulators of Nod2 and identified Erbin, a protein involved in cell polarity, receptor localization, and regulation of the mitogen-activated protein kinase pathway, as a novel Nod2-interacting protein. In our studies, we demonstrate specific interaction of Erbin and Nod2 both in vitro and in vivo and characterize the regions required for interaction in both proteins. We found that Nod2-dependent activation of NF-kappaB and cytokine secretion is inhibited by Erbin overexpression, whereas Erbin-/- mouse embryo fibroblasts show an increased sensitivity to muramyl dipeptide. These studies identify Erbin as a regulator of Nod2 signaling and demonstrate a novel role for Erbin in inflammatory responses.  相似文献   

14.
The pattern-recognition molecule Nod1 is a critical sensor for bacterial derived diaminopimelic acid-containing peptidoglycan fragments which induces innate immune responses in epithelial cells. Here we report the subcellular localization of this protein in human epithelial cells. Nod1 is localized in the cytosol and at the plasma membrane in human cells. This membrane association is dependent on the integrity of the protein, on its signalling capacity and on an intact actin cytoskeleton. Signalling-inactive mutants of Nod1 or disruption of the actin cytoskeleton interferes with this localization pattern and impacts on downstream NF-κB activation. Moreover, the invasive bacterium Shigella flexneri was used as a model for physiological activation of Nod1. Imaging revealed that Nod1 is recruited to the site of bacterial entry, where it colocalizes with NEMO. Our data provide evidence that membrane association is linked to Nod1 function and, in view of recent findings on Nod2, that this may be a common feature of NLR family members.  相似文献   

15.
16.
Muramyl peptides derived from bacterial peptidoglycan are detected intracellularly by Nod1 and Nod2, 2 members of the newly characterized nod-like receptor (NLR) family of pattern recognition molecules. In the absence of bacterial invasion into the host cytosolic compartment, it remains unclear whether muramyl peptides can cross the plasma membrane and localize into the cytosol. We have recently demonstrated that the plasma membrane transporter, hPepT1, was able to efficiently translocate muramyl dipeptide (MDP), a specific Nod2-activating molecule, into host cells. We aimed to characterize the transport properties of hPepT1 towards a spectrum of muramyl peptides, including Nod1-activating molecules. To do so, we designed an original procedure based on the ectopic expression of hPepT1 in oocytes from Xenopus laevis. Our results demonstrated that hPepT1 transports MDP but no other Nod2-activating molecule. Moreover, we observed that Nod1-stimulating muramyl peptides were not transported by hPepT1. Since hPepT1 expression is strongly associated with intestinal epithelial cells, where Nod1 and Nod2 have been shown to play a key role, these observations suggest a distinct contribution of Nod1 and Nod2 in mucosal homeostasis following the cellular uptake of muramyl peptides by hPepT1.  相似文献   

17.
Drosophila peptidoglycan recognition protein (PGRP)-LCx and -LCa are receptors that preferentially recognize meso-diaminopimelic acid (DAP)-type peptidoglycan (PGN) present in Gram-negative bacteria over lysine-type PGN of gram-positive bacteria and initiate the IMD signaling pathway, whereas PGRP-LE plays a synergistic role in this process of innate immune defense. How these receptors can distinguish the two types of PGN remains unclear. Here the structure of the PGRP domain of Drosophila PGRP-LE in complex with tracheal cytotoxin (TCT), the monomeric DAP-type PGN, reveals a buried ionic interaction between the unique carboxyl group of DAP and a previously unrecognized arginine residue. This arginine is conserved in the known DAP-type PGN-interacting PGRPs and contributes significantly to the affinity of the protein for the ligand. Unexpectedly, TCT induces infinite head-to-tail dimerization of PGRP-LE, in which the disaccharide moiety, but not the peptide stem, of TCT is positioned at the dimer interface. A sequence comparison suggests that TCT induces heterodimerization of the ectodomains of PGRP-LCx and -LCa in a closely analogous manner to prime the IMD signaling pathway, except that the heterodimer formation is nonperpetuating.  相似文献   

18.
Microorganisms associated with the stems and roots of nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod(+) soybean roots. Fusarium solani was stably associated with nodulated (Nod(+) and Nod(++)) roots and less abundant in Nod(-) soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod(-), Nod(+), or Nod(++)). The analysis of root samples indicated that the microbial community in Nod(-) soybeans was more similar to that in Nod(++) soybeans than to that in Nod(+) soybeans.  相似文献   

19.
Nod2 is an intracellular innate immune receptor that plays a role in host defense and susceptibility to inflammatory disease. We show in this study that macrophages rendered refractory to TLR4 and Nod2 signaling by exposure to LPS and muramyl dipeptide (MDP) exhibit impaired TNF-alpha and IL-6 production in response to pathogenic Listeria monocytogenes and Yersinia pseudotuberculosis as well as commensal bacteria including Escherichia coli and Bacteroides fragilis. Surprisingly, Nod2 deficiency was associated with impaired tolerization in response to pathogenic and commensal bacteria. Mechanistically, reduced tolerization of Nod2-null macrophages was mediated by recognition of bacteria through Nod1 because it was abolished in macrophages deficient in Nod1 and Nod2. Consistently, Nod2-null macrophages tolerant to LPS and MDP showed enhanced production of TNF-alpha and IL-6 as well as increased NF-kappaB and MAPK activation in response to the dipeptide KF1B, the Nod1 agonist. Furthermore, reduced tolerization of Nod2-deficient macrophages in response to bacteria was abolished when mutant macrophages were also rendered tolerant to the Nod1 ligand. Finally, MDP stimulation induced refractoriness not only to MDP, but also to iE-DAP stimulation, providing a mechanism to explain the reduced tolerization of Nod2-deficient macrophages infected with bacteria. These results demonstrate that cross-tolerization between Nod1 and Nod2 leads to increase recognition of both pathogenic and commensal bacteria in Nod2-deficient macrophages pre-exposed to microbial ligands.  相似文献   

20.
Nod1 and Nod2 are members of the Nod-like receptor family that detect intracellular bacterial peptidoglycan-derived muramyl peptides. The biological effects of muramyl peptides have been described for over three decades, but the mechanism underlying their internalization to the cytosol remains unclear. Using the human epithelial cell line HEK293T as a model system, we demonstrate here that Nod1-activating ligands entered cells through endocytosis, most likely by the clathrin-coated pit pathway, as internalization was dynamin-dependent but not inhibited by methyl-β-cyclodextrin. In the endocytic pathway, the cytosolic internalization of Nod1 ligands was pH-dependent, occurred prior to the acidification mediated by the vacuolar ATPase, and was optimal at pH ranging from 5.5 to 6. Similarly, the Nod2 ligand MDP was internalized into host cytosol through a similar pathway with optimal pH for internalization ranging from 5.5 to 6.5. Moreover, Nod1-activating muramyl peptides likely required processing by endosomal enzymes, prior to transport into the cytosol, suggesting the existence of a sterically gated endosomal transporter for Nod1 ligands. In support for this, we identified a role for SLC15A4, an oligopeptide transporter expressed in early endosomes, in Nod1-dependent NF-κB signaling. Interestingly, SLC15A4 expression was also up-regulated in colonic biopsies from patients with inflammatory bowel disease, a disorder associated with mutations in Nod1 and Nod2. Together, our results shed light on the mechanisms by which muramyl peptides get access to the host cytosol, where they are detected by Nod1 and Nod2, and might have implications for the understanding of human diseases, such as inflammatory bowel disease.Innate immunity relies on the detection of conserved microbial- or danger-associated molecular patterns (MAMPs or DAMPs),2 by pattern-recognition molecules. In mammals, several families of pattern-recognition molecules have been recently identified, including the transmembrane Toll-like receptors (TLRs), cytosolic Nod-like receptors (NLRs), and RIG-I-like receptors (1). NLR proteins include Nod1 and Nod2, which trigger pro-inflammatory pathways such as NF-κB and mitogen-activated protein kinases, in response to bacterial peptidoglycan (2), and NLRPs (also known as Nalps), such as NLRP1 and NLRP3, which induce the activation of caspase-1 inflammasomes in response to various MAMPs and DAMPs (3).In the case of TLRs, there is accumulating evidence that the subcellular localization and the function of these pattern-recognition molecules is tightly associated, at multiple levels, with endocytosis and phagocytosis, which represent evolutionary conserved mechanisms for the internalization of small (<0.5 μm) and large (>0.5 μm) particles, respectively. Indeed, whereas some TLRs are expressed at the plasma membrane, others (such as TLR3, -7, and -9) are found predominantly associated with the endoplasmic reticulum and endosomal compartments, where they detect their respective microbial-derived nucleic acid MAMPs (4). In particular, TLR9 has been shown to move from the endoplasmic reticulum to CpG DNA-containing endosomes, concurrent with the accumulation of MyD88, thus showing that endosomes represent the physiological location where TLR9-dependent signaling arises (5). In addition, studies on TLR4 have demonstrated that lipopolysaccharide (LPS) is endocytosed by a receptor-mediated mechanism dependent on dynamin and clathrin and co-localized with TLR4 on early/sorting endosomes (6). In the case of this TLR, it is believed that endosomal trafficking is associated with termination of the MyD88-dependent pro-inflammatory signal (6). In contrast, TLR4 in early endosomes has been shown recently to engage TRAM and TRIF adaptors, resulting in the ignition of type I interferon signaling in response to LPS (7). Therefore, the nature of the cellular response to LPS is dependent upon the subcellular localization of TLR4, thus reinforcing the importance of the interplay between TLR signaling and endosomal trafficking.A number of studies have also linked TLR signaling with phagosome maturation. Although it remains controversial whether TLR-dependent signaling actually drives phagosomal maturation (8, 9), it is clear that the processing of engulfed microbes within phagosomes regulates the availability of MAMPs within this compartment. Accordingly, Herskovits et al. have recently demonstrated that, in interferon Γ-activated macrophages, the degradation of Listeria monocytogenes in the phagolysosome generates bacterial molecules, which could specifically trigger type I interferon responses through a Nod2-dependent pathway (10). This interesting observation suggests that innate immune signaling and microbial degradation within the phagolysosome are processes that are intimately linked. It also provides support to the concept that Nod-dependent signaling is associated with intracellular vesicular trafficking.Nod1 and Nod2 both detect specific structures from bacterial peptidoglycan (11). Whereas Nod2 detects muramyl dipeptide (MDP) (12, 13), a motif found in almost all bacteria, Nod1 specifically senses diaminopimelic acid (DAP)-containing muramyl peptides (14, 15). In particular, human Nod1 preferentially detects N-acetylmuramyl-l-Ala-d-Glu-mesoDAP (M-Tri-DAP) (16), and the minimal motif for Nod1-dependent sensing is the dipeptide d-Glu-mesoDAP (iE-DAP) (11, 14). Interestingly, long before the identification of Nod1 and Nod2 as sensors of muramyl peptides and bacterial peptidoglycan, the biological activities of these bacterial-derived molecules had been studied extensively (17, 18). It is well documented that these muramyl peptides trigger a multitude of immune responses, such as the induction of cytokines/chemokines, the production of nitric oxide and reactive oxygen species, and the clearance of microbes by phagocytic cells (17, 18). A considerable literature also demonstrated that these muramyl peptides synergize with MAMPs detected by TLRs, such as LPS (19). Although the identification of Nod1 and Nod2 as sensors of muramyl peptides has provided an acceleration in this field of investigation, it also brought the question of how such microbial molecules could get access to the host cytosol, where Nod1 and Nod2 reside. Interestingly, research aiming at improving the biological activities of these muramyl peptides demonstrated early on that the addition of lipophilic groups to these molecules enhanced their activity considerably, suggesting that their internalization was likely a key factor in determining their efficiency (2023).The mechanisms by which muramyl peptides get access to the host cytosol remain unclear. This question is of fundamental importance for our understanding of Nod-dependent signaling and potentially holds broad therapeutic implications. Indeed, mutations in Nod1 and Nod2 have been associated with inflammatory bowel disease (IBD) in humans (24). In particular, Nod2 has been identified as the first susceptibility gene for Crohn''s disease (25, 26).In this report, we used the HEK293T epithelial cell line to study the mechanism of internalization of Nod1 ligands. We demonstrated that these peptidoglycan-derived molecules enter cells by endocytosis, and that the composition of the Nod1-activating molecules dramatically affected their intrinsic uptake capacity. Our data also suggested that this internalization was mediated by clathrin-dependent endocytosis, because internalization of Nod1 ligands required dynamin and was independent from caveolae. Further, we showed that, within endosomes, the internalization of Nod1 ligands was critically dependent on pH, and was optimal at pH ranging from 5.5 to 6, which are characteristic of early endosomes. Accordingly, internalization of Nod1-activating molecules did not require the action of the vacuolar ATPase (V-ATPase) complex. We also provide evidence that the Nod2 ligand MDP enters cells through a similar endocytic process. Our results also show that the internalization of Nod1 ligands is a process that is sterically gated, and likely requires the action of hydrolytic endosomal enzymes prior to transport into the cytosol, thus suggesting the existence of one or several specific transporters for Nod1 ligands in early endosomes. Using knockdown assays, we identified SLC15A4 as a putative transporter for Nod1 ligands in early endosomes. SLC15A4 expression was found to be significantly up-regulated in tissue biopsies from IBD patients, therefore highlighting a potential role for the modulation of peptidoglycan access to the cytosol in IBD etiology. Together, our results uncover the mechanism by which Nod ligands traffic into cells and get access to the cytosol where they are detected by Nod1 and Nod2. Our observations also highlight the previously unappreciated link between endosomal acidification/maturation and Nod-dependent signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号