首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microinjection of approximately 0.3 mug of calcium into maturing oocytes of Rana pipiens after nuclear dissolution resulted in cleavage-like constrictions, cortical granule breakdown, and formation of a structure resembling a two-cell embryo. Mg2+, Na+, or K+ did not induce any of these reactions. Larger amounts of Ca2+-induced contraction over the entire surface of oocytes or eggs, but did not induce cleavage-like constrictions; smaller amounts of Ca2+ produced either a local cortical granule reaction of the formation of one large and one small "blastomere." Furrow formation was not observed during normally induced maturation until after germinal vesicle breakdown. The location of microinjected Ca2+ determined the orientation of the resulting furrow. Ca2+-induced cortical granule breakdown occurred in full-grown nonmaturing oocytes near the site of injection. Cortical granule breakdown also occurred in maturing oocytes (after germinal vesicle breakdown but before second meiotic metaphase), but only in the blastomere containing the infected Ca2+. As expected, in mature oocytes (at second meiotic metaphase) cortical granule breakdown occurred over the entire oocyte surface, including both blastomeres. The results indicate that furrow formation and cleavage-like constrictions may be directly influenced by Ca2+, and that functional contractile elements are present near all areas of the oocyte surface. Furthermore, Ca2+ injection initiates localized cortical granule breakdown in full-grown immature and maturing oocytes.  相似文献   

2.
In unfertilized eggs of the sea urchin Hemicentrotus pulcherrimus , fertilization membrane formation was induced by an incubation with dimethylsulfoxide (DMSO) for several min at 20°c followed by another incubation in an ice bath. The number of eggs with fertilization membrane, thus obtained, increased in relation to the concentration of DMSO between 1 and 3% (v/v) and was higher than 75% at concentrations above 3%. Fertilization membrane formation by this treatment occurred in Ca2+ free- or Ca2+, Mg2+ free- artificial sea water containing EGTA (50 mM) and was inhibited by verapamil. In the presence of DMSO, the membrane formation was also induced by 2, 4-dinitrophenol or cyanide in considerable number of eggs at 20°c. Eggs remained fertilizable, even when they were kept with DMSO for 1 hr at 20°c. DMSO slightly enhanced respiratory rate in unfertilized eggs and substantially reduced it in fertilized eggs. DMSO-treated eggs exhibited cyanide-insensitive respiratory burst following chilling in an ice bath or by adding DNP or cyanide, in a similar manner to the burst induced by sperm.  相似文献   

3.
It has been known in amphibians and starfishes that a cytoplasmic factor called maturation-promoting factor (MPF), produced in maturing oocytes under the influence of the maturation-inducing hormones, can induce germinal vesicle breakdown (GVBD) and the subsequent process of meiotic maturation. The present study revealed that injection of cytoplasm of maturing starfish oocytes (starfish MPF) into immature sea cucumber oocytes brought about maturation of the recipients. Amphibian MPF obtained from mature oocytes of Xenopus laevis or Bufo bufo was found to induce maturation of starfish oocytes following injection. Cytoplasm taken from cleaving starfish blastomeres induced maturation when injected into immature starfish oocytes. The maturation-inducing activity of cytoplasm of starfish blastomeres changed along with the mitotic cell cycle during 1- to 4-cell stages so far tested and reached a peak just before cleaving. Furthermore, an extract of mammalian cultured cells, CHO or V-79, synchronized in M phase, induced GVBD in starfish oocytes following injection, whereas S phase extract had little activity. These facts suggest that MPF generally brings about nuclear membrane breakdown in both meiosis and mitosis, and that the nature of MPF is very similar among vertebrates and invertebrates.  相似文献   

4.
The ability of brain nuclei to give rise to condensed chromosomes was studied inRana pipiens eggs which had undergone meiotic maturation in vivo, in blastomeres of two-cell embryos which had been arrested at metaphase by the injection of cytostatic factor (CSF) from mature eggs, and in immature fully grown ovarian oocytes with and without prior CSF injection. Chromosomes from brain nuclei were found to condense within 4 h in mature eggs and this chromosome condensation activity was enhanced by the chelation of free Ca2+ in the nuclear isolation medium. Chromosomes also condensed in CSF-arrested blastomeres whether they were placed in the blastomere 30 min before the CSF injection or as long as 22 h after the CSF. Both the Ca2+-sensitive CSF, 1CSF, and the Ca2+-insensitive CSF, 2CSF, resulted in chromosome condensation within arrested blastomeres. The condensation was accompanied by the formation of multipolar spindles and asters. However, it was found that cytoplasm in CSF-arrested blastomeres does not arrest mitosis at metaphase when transferred into a cleaving blastomere. Other experiments demonstrated that chromosome condensation does not occur in ovarian oocytes even when supplied with CSF. The results are interpreted as indicating that CSF does not directly bring about chromosome condensation, but arrests the cell cycle at metaphase and stabilizes the cytoplasmic conditions of metaphase which, in turn, induce chromosome condensation in foreign nuclei as well as spindle and aster formation.  相似文献   

5.
At fertilization in mammals, the sperm activates the egg by inducing a series of oscillations in the intracellular free Ca(2+) concentration. There is evidence showing that this oscillatory event is triggered by a sperm-derived protein factor which diffuses into egg cytoplasm after gamete membrane fusion. At present the identity of this factor and its precise mechanism of action is unknown. Here, we studied the specificity of action of the sperm factor in triggering Ca(2+) oscillations in mammalian eggs. In doing so, we examined the patterns of Ca(2+) signaling in mouse eggs, zygotes, parthenogenetic eggs and maturing oocytes following the stimulation of bovine sperm extracts which contain the sperm factor. It is observed that the sperm factor could induce Ca(2+) oscillations in metaphase eggs, maturing oocytes and parthenogenetically activated eggs but not in the zygotes. We present evidence that Ca(2+) oscillations induced by the sperm factor require a maternal machinery. This machinery functions only once in mammalian oocytes and eggs, and is inactivated by sperm-derived components but not by parthenogenetic activation. In addition, it is found that neither InsP(3) receptor sensitivity to InsP(3) nor Ca(2+) pool size are the determinants that cause the fertilized egg to lose its ability to generate sperm-factor-induced Ca(2+) oscillations at metaphase. In conclusion, our study suggests that the orderly sequence of Ca(2+) oscillations in mammalian eggs at fertilization is critically dependent upon the presence of a functional maternal machinery that determines whether the sperm-factor-induced Ca(2+) oscillations can persist.  相似文献   

6.
We have examined the regulation of maturation-promoting factor (MPF) activity in the mitotic and meiotic cell cycles of Xenopus laevis eggs and oocytes. To this end, we developed a method for the small scale extraction of eggs and oocytes and measured MPF activity in extracts by a dilution end point assay. We find that in oocytes, MPF activity appears before germinal vesicle breakdown and then disappears rapidly at the end of the first meiotic cycle. In the second meiotic cycle, MPF reappears before second metaphase, when maturation arrests. Thus, MPF cycling coincides with the abbreviated cycles of meiosis. When oocytes are induced to mature by low levels of injected MPF, cycloheximide does not prevent the appearance of MPF at high levels in the first cycle. This amplification indicates that an MPF precursor is present in the oocyte and activated by posttranslational means, triggered by the low level of injected MPF. Furthermore, MPF disappears approximately on time in such oocytes, indicating that the agent for MPF inactivation is also activated by posttranslational means. However, in the absence of protein synthesis, MPF never reappears in the second meiotic cycle. Upon fertilization or artificial activation of normal eggs, MPF disappears from the cytoplasm within 8 min. For a period thereafter, the inactivating agent remains able to destroy large amounts of MPF injected into the egg. It loses activity just as endogenous MPF appears at prophase of the first mitotic cycle. The repeated reciprocal cycling of MPF and the inactivating agent during cleavage stages is unaffected by colchicine and nocodazole and therefore does not require the effective completion of spindle formation, mitosis, or cytokinesis. However, MPF appearance is blocked by cycloheximide applied before mitosis; and MPF disappearance is blocked by cytostatic factor. In all these respects, MPF and the inactivating agent seem to be tightly linked to, and perhaps participate in, the cell cycle oscillator previously described for cleaving eggs of Xenopus laevis (Hara, K., P. Tydeman, and M. Kirschner, 1980, Proc. Natl. Acad. Sci. USA, 77:462- 466).  相似文献   

7.
The present study examined in vitro development and the cytological status of non-enucleated rat oocytes after microinjection of cumulus nuclei and chemical activation. Oocyte-cumulus complexes were collected from gonadotropin-treated prepubertal female Wistar rats 14 h after human chorionic gonadotropin (hCG) injection. Cumulus nuclei were injected into ovulated oocytes and then stimulated in the presence of 5 mM SrCl2 for 20 min at various time points (0-3.5 h) after injection. Some of the reconstituted eggs were cultured to observe the pronuclear formation, cleavage, and blastocyst formation. The incidences of eggs forming at least one pronucleus or containing two pronuclei were not significantly different among the periods (82.4-83.5% and 43.4-51.9%, respectively). Nor did the incidences of eggs cleaving (86.7-97.7%) and developing to the blastocyst stage (0-3.5%) differ depending on when, after injection, stimulation began. When some of the reconstituted eggs were observed for cytological morphology 1-1.5 h after injection, 71.7% of the eggs caused premature chromatin condensation, but only 46.2% of them formed two spindles around each of maternal and somatic chromatins. However, the morphology of the somatic spindles differed from that of the spindles, which formed around the oocyte chromatins. Only 7.5% of the eggs contained the normal chromosomal number. In many reconstituted oocytes, before activation, an abnormal spindle formation was observed in the somatic chromatins. In conclusion, these results show that non-enucleated rat oocytes injected with cumulus nuclei can form pronuclei and cleave following chemical activation, whereas blastocyst formation is very limited, probably caused by abnormalities in the spindle formation and distribution of somatic chromatids.  相似文献   

8.
W Liu  J Yin  G Zhao  Y Yun  S Wu  KT Jones  A Lei 《Theriogenology》2012,78(6):1171-1181
During mammalian oocyte maturation, two consecutive meiotic divisions are required to form a haploid gamete. For each meiotic division, oocytes must transfer from metaphase to anaphase, but maturation promoting factor (cyclin-dependent kinase 1/cyclin B1) activity would keep the oocytes at metaphase. Therefore, inactivation of maturation promoting factor is needed to finish the transition and complete both these divisions; this is provided through anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. The objective of this study was to examine meiotic divisions in bovine oocytes after expression of a full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion, coupled with the fluorochrome Venus, by microinjecting their complementary RNA (cRNA). Overexpression of full-length cyclin B1-Venus inhibited homologue disjunction and first polar body formation in maturing oocytes (control 70% vs. overexpression 16%; P < 0.05). However at the same levels of expression, it did not block second meiotic metaphase and cleavage of eggs after parthenogenetic activation (control: 82% pronuclei and 79% cleaved; overexpression: 91% pronuclei and 89% cleaved). The full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion caused metaphase arrest in both meiotic divisions, whereas degradation of securin was unaffected. Roscovitine, a potent cyclin-dependent kinase 1 (CDK1) inhibitor, overcame this metaphase arrest in maturing oocytes at 140 μM, but higher doses (200 μM) were needed to overcome arrest in eggs. In conclusion, because metaphase I (MI) blocked by nondegradable cyclin B1 was distinct from metaphase II (MII) in their different sensitivities to trigger CDK1 inactivation, we concluded that mechanisms of MI arrest differed from MII arrest.  相似文献   

9.
Fertilization or activation by ionophore A 23187 induces a transient acid release in prophase-blocked and in maturing oocytes of Asterias rubens and Marthasterias glacialis. 1-Methyladenine-induced maturation is not accompanied by acid release. There is no significant difference in the kinetic and amount of acid release related to the nature of activation or the stage of oocytes in each species. The amount of acid released per oocyte volume is smaller than total "fertilization acid" of sea urchin eggs but comparable to its Na-insensitive component. Cortical reaction can be initiated without significant acid release in ammonia treated oocytes. A burst of sodium influx occurs at activation or fertilization of oocytes. Kinetic and amount of Na influx are comparable to acid release. Vitelline membrane elevation is impaired upon activation of oocytes in the absence of extracellular sodium but a significant although smaller release of acid occurs. This suggests that starfish oocytes release acid by a mechanism differing from the Na+-H+ exchange of sea urchin eggs.  相似文献   

10.
An electric power device to fuse starfish oocytes was constructed. The outputs were supplied to a pair of parallel platinum wires in a solution of mannitol to which small amounts of salts were added. Oocytes of the starfish Asterina pectinifera , deprived of the vitelline envelope, were fused by several repetitions of a combination of 2.5 MHz AC field for a few seconds and a 50 μs DC pulse. Observation of fusing pairs of immature oocytes revealed that: (i) the oocyte placed near to the cathode forms a bulge at the surface facing the anode when subjected to DC pulses and, with subsequent DC pulses, a similar bulge is formed on another oocyte; and (ii) the pair of bulges then fuse together leading to fusion of the main body of the two oocytes. The conjugate of maturing oocytes soon became a single sphere, usually within 10 min, but this process toward spherical form paused when the oocyte was extruding its polar bodies. The conjugate of immature oocytes took 1 h to become a single sphere. The fusion did not disturb the progress of meiotic events, but electric pulses at an intensity suitable for the fusion often activated maturing oocytes and mature eggs.  相似文献   

11.
Summary In hydrozoans the sperm will fuse with the egg only at the site of polar body formation. The primary oocyte and maturing oocytes which have produced the first polar body cannot be fertilized even though maturing oocytes which have produced the first polar body attract sperm. These eggs do not acquire the ability to be fertilized until after second polar body formation. If either first or second polar body formation is inhibited or if first and second polar body formation do not take place in close proximity to each other, the fertilization site is not set up. Under normal circumstances the site of polar body formation takes place at the region on the maturing oocyte surface nearest the site where the germinal vesicle resided in the primary oocyte. When maturing oocytes are centrifuged prior to polar body formation, the site of polar body formation is frequently shifted so that it does not correspond to the site where it would be given off under normal circumstances. Under these conditions the shifted site of polar body formation is the only site where the egg can be fertilized, indicating that the fertilization site is selected during oocyte maturation.Oocyte maturation in these hydrozoans is mediated by a hormone released by the somatic cells of gonophores as a consequence of bringing dark adapted gonophores into the light. The hormone acts directly on the oocyte to induce maturation. The oocyte only has to be exposed to the hormone for the first few minutes of the maturation process in order to complete the process of maturation.Dedicated to Professor N.H. Verdonk of the Rijksuniversiteit Utrecht on his 65th birthday  相似文献   

12.
Erp1 (also called Emi2), an inhibitor of the APC/C ubiquitin ligase, is a key component of cytostatic factor (CSF) responsible for Meta-II arrest in vertebrate eggs. Reportedly, however, Erp1 is expressed even during meiosis I in Xenopus oocytes. If so, it is a puzzle why normally maturing oocytes cannot arrest at Meta-I. Here, we show that actually Erp1 synthesis begins only around the end of meiosis I in Xenopus oocytes, and that specific inhibition of Erp1 synthesis by morpholino oligos prevents entry into meiosis II. Furthermore, we demonstrate that premature, ectopic expression of Erp1 at physiological Meta-II levels can arrest maturing oocytes at Meta-I. Thus, our results show the essential role for Erp1 in the meiosis I/meiosis II transition in Xenopus oocytes and can explain why normally maturing oocytes cannot arrest at Meta-I.  相似文献   

13.
Immature oocytes of the annelid Pectinaria were prematurely fertilized while in the germinal vesicle stage. Fertilization was morphologically normal except for the formation of an enlarged fertilization cone which persisted even after sperm incorporation. However, at 30 min postinsemination, no signs of male pronuclear morphogenesis were detected. Ultrastructural data show that in the cytoplasm of a GV-stage oocyte the sperm nuclear envelope remains intact and the enclosed chromatin remains condensed. Prematurely fertilized eggs were then induced to undergo germinal vesicle breakdown (GVBD). Subsequently male pronuclear development occurred. Thus, the factors in the Pectinaria oocyte which are necessary for sperm transformation develop in the maturing cytoplasm and are dependent upon GVBD. Such prematurely fertilized oocytes fail to display the normal arrest of meiosis at Metaphase I, but instead progress directly to formation of the female pronucleus. Occurrences of normal first cleavage were observed suggesting that prematurely incorporated sperm can be recruited for participation in development.  相似文献   

14.
Full-grown oocytes of amphibians respond in vitro to exogenous progesterone by undergoing physiological maturation (breakdown of the germinal vesicle (GVBD), meiosis, and acquisition of the capacity for activation). Both cytoplasm and “cytosol” from maturing oocytes have been shown to produce similar events when injected into unstimulated oocytes. This activity appeared within 4 hr after hormone treatment in Rana pipiens and Xenopus laevis and represents the earliest detectable, specific response of the oocyte yet observed, i.e., 6–8 hr before GVBD in Rana. Maturing oocytes retained activity as long as 100 hr after exposure to progesterone, and activity was also obtained from ovulated eggs and cleaving embryos. In addition, cytoplasm from Rana pipiens, Xenopus laevis, or Ambystoma mexicanum was effective in inducing maturation in oocytes of each other, indicating a lack of specificity.Recipient oocytes of Xenopus laevis consistently began to mature within 1.5–3 hr after injection of maturing cytoplasm, well before progesterone-treated controls. The timing of the response was closely related to the quantity of cytoplasm transferred, suggesting the presence of both a minimum and threshold level of cytoplasmic factor. Serial cytoplasmic transfer in Xenopus oocytes showed no significant loss of activity through 10 injections.  相似文献   

15.
It has been shown that various inhibitors of protein synthesis can elicit the precocious appearance of a gray crescent (GC) in in vitro maturing, nonactivated Ambystoma mexicanum oocytes. However, evidence has now been obtained that these treatments fail to induce GC formation when the oocytes are enucleated before initiation of maturation. The ability to form a GC is reestablished in enucleated oocytes by the injection of nucleoplasm from a normal oocyte, either before or after the injection of the inhibitor. In the latter case, the GC appears very rapidly, even though protein synthesis is at about 1/10th that of the control enucleated oocyte, after treatment with diphtheria toxin (final concentration 10(-8) M) as an inhibitor. One or several nuclear factors, in conjunction with inhibition of protein synthesis, are therefore essential for early symmetrization. The corrective nuclear factor is already present in the germinal vesicle of young oocytes, at the very beginning of vitellogenesis. It is not species specific, since enucleated axolotl oocytes can be symmetrized with Pleurodeles or even Xenopus oocyte nucleoplasm. Moreover, it has been shown that the nuclear-cytoplasmic interaction is possible only when cytoplasmic maturation has been proceeding for at least 10 hr after exposure to progesterone (at 18 degrees C). A three-step process as a prerequisite of GC formation in the oocyte is proposed: Cytoplasmic maturation must proceed till a reactive state is attained, allowing interactions with nuclear factors; Nuclear factor(s) interact(s) with matured cytoplasm; Inhibition of protein synthesis triggers GC formation. Sequence of steps 2 and 3 can be experimentally inverted but must always be preceded by step 1. Since a sharp reduction in amino acid incorporation has also been found in normally fertilized eggs just prior to GC formation, it is suggested that the scheme described above could be also applicable to normal symmetrization in this model system.  相似文献   

16.
Meiotic spindle formation in Spisula solidissima oocytes hasbeen studied in vivo and in vitro. Measurements were made ofpolymerized tubulin content during the first meiotic division.The amount of polymer was high prior to activation of the eggs,fell to a minimum of about 5 min after activation and at 15min (metaphase) returned to approximately its initial value.The polymerized tubulin in the unactivated eggs appears to beorganized into granular spheres about 10–20 microns indiameter attached to the egg cortex. This particle containsfew microtubules but is composed primarily of a granular matrixand fibrous material. The granular matrix may be a polymorphicaggregate of tubulin and could be a storage form of tubulinor an intermediate in microtubule assembly. The polymerization and organization of microtubules has beenstudied in vitro, using crude homogenates of Spisula oocytes.Microtubules can be formed in homogenates of both activatedand unactivated eggs; however, in homogenates of eggs in whichnuclear membrane breakdown has occurred, microtubules form arounda central phase dense particle resulting in a structure whichresembles a spindle aster. The central particle appears to bea microtubule organizing center (MTOC). The MTOC can be pelleledby centrifugation and will induce aster formation when remixedwith the supernatant. Aster formation can be obtained usingsupernatants prepared from either activated or unactivated eggs,while the pellet must be obtained from activated eggs. Thus,tubulin subunits appear to be capable of spindle formation atall stages, while MTOC formation or activation does not occuruntil about the time of nuclear membrane breakdown.  相似文献   

17.
Full-grown amphibian oocytes that had been arrested at meiotic prophase I contained an activity that prevented the cell cycle from progressing beyond a G2-like stage. Injection of the contents of germinal vesicles (GV-content) or cytoplasm obtained from oocytes of the frog Rana rugosa prevented fertilized eggs of Cynops pyrrhogaster or Bufo japonicus from cleaving. The nuclei in the arrested eggs consisted of thin chromosomes and nucleolus-like particles enclosed within clear nuclear membrane and their volume increased as a function of time after injection. Cycling of maturation-promoting factor (MPF) did not occur in the injected eggs, but DNA synthesis was not disturbed. The injection of exogenous MPF into the eggs induced the reinitiation of the cell cycle with progression to the M phase and subsequent cleavage. Furthermore, the injection into the full-grown oocytes of Bufo inhibited induction of the maturation of oocytes by progesterone. These results demonstrate that a factor that arrests the cell cycle either at a G2-like stage of mitosis or at prophase in meiosis is present both in the GV and cytoplasm of frog oocytes. We refer to this factor as a G2-specific cytostatic factor (G2-CSF). G2-CSF may play an important role not only in the physiological arrest at prophase I in meiosis, but also in regulation of the G2/M transition in the cell cycle of early embryonic cells.  相似文献   

18.
Female mice were exposed to 300 R of 73-93 R/min X-radiation either as fetuses at 18.5 d post conception (p.c.) or within 9 h after birth. Combining the similar results from these two groups yielded a specific-locus mutation frequency of 9.4 X 10(-8) mutation/locus/R, which is statistically significantly higher than the historical-control mutation frequency, but much lower than the rate obtained by irradiating mature and maturing oocytes in adults. Other females, exposed at 18.5 days p.c. to 300 R of 0.79 R/min gamma-radiation, yielded a mutation frequency that was statistically significantly lower than the frequency at high dose rates. The low-dose-rate group also had markedly higher fertility. It appears that the dose-rate effect for mutations induced near the time of birth may be more pronounced than that reported for mature and maturing oocytes of adults. A hypothesis sometimes advanced to explain low mutation frequencies recovered from cell populations that experience considerable radiation-induced cell killing is that there is selection against mutant cells. The reason for the relatively low mutational response following acute irradiation in our experiments is unknown; however, the finding of a dose-rate effect in these oocytes in the presence of only minor radiation-induced cell killing (as judged from fertility) makes it seem unlikely that selection was responsible for the low mutational response following acute exposure. Had selection been an important factor, the mutation frequency should have increased when oocyte killing was markedly reduced.  相似文献   

19.
Biological data, size frequency distribution of intraovarian oocytes, maturity indices and histological observations of the gonads were used to assess the spawning cycle of S. brasiliensis , sampled September 1981–August 1982 throughout the main fishing area off the Brazilian coast (22°S to 28°S). Post-ovulatory follicles are described and classified, and the incidence of mature females displaying these structures was calculated. The main findings were (a) spawning occurred during the spring and summer with a maximum in December and January; (b) spawning occurred throughout the area studied; (c) spawning was fractional; (d) average batch fecundity was 26 000 oocytes per female, or 393 eggs g−1; (e) spawning frequency reached values of approximately 50% during the spawning peak, but was sensibly lower during the other months of spawning activity.  相似文献   

20.
Abstract Female stoneflies oviposit several times during the adult stage of their life cycle. The number of eggs within the deposited egg masses decreases at successive ovipositions. To clarify the reason for this decrease and to determine the conditions of testicular follicles, the patterns of development of oocytes and testicular follicles on different days after emergence are investigated in the systellognathan species Stavsolus japonicus (Okamoto) (Perlodidae). The size of the mature oocytes in the ovariole peaks a few weeks after emergence but decreases to the lowest level by 35 days after emergence. Several maturing oocytes can be observed in the ovarioles of individuals a few weeks after emergence but only one mature oocyte is observed at 35 days after emergence. The decreased number of eggs laid per mass by older individuals may therefore be due to the lower maturation of all the ovarioles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号