首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antimicrobial interactions of 49 combinations of chlorhexidine, quaternary ammonium compounds, preservatives and excipients were evaluated by the method of Berenbaum and the checkerboard titration method, with Staphylococcus aureus CIP 53154 and Escherichia coli CIP 54127 as test strains. MIC determinations were carried out as a preliminary step, and relative growth intensity was used to describe the bacteriostatic activity of surface-active agents (Amonyl 380 BA, Amonyl 671 SB). In the study of combinations, results were interpreted with Fractional Inhibitory Concentration indexes and represented by isobolograms. A fair correlation was shown between the method of Berenbaum and the checkerboard titration method. Combinations between chlorhexidine, cetrimonium bromide and benzalkonium chloride were synergistic or additive; combinations of antiseptics and preservatives were generally not antagonistic. The methods were also well adapted to the study of interactions involving surface-active agents, a critical problem in the formulation of topical antimicrobial agents.  相似文献   

2.
The antimicrobial interactions of 49 combinations of chlorhexidine, quaternary ammonium compounds, preservatives and excipients were evaluated by the method of Berenbaum and the checkerboard titration method, with Staphylococcus aureus CIP 53154 and Escherichia coli CIP 54127 as test strains. MIC determinations were carried out as a preliminary step, and relative growth intensity was used to describe the bacteriostatic activity of surface-active agents (Amonyl 380 BA®, Amonyl 671 SB®). In the study of combinations, results were interpreted with Fractional Inhibitory Concentration indexes and represented by isobolograms. A fair correlation was shown between the method of Berenbaum and the checkerboard titration method. Combinations between chlorhexidine, cetrimonium bromide and benzalkonium chloride were synergistic or additive; combinations of antiseptics and preservatives were generally not antagonistic. The methods were also well adapted to the study of interactions involving surface-active agents, a critical problem in the formulation of topical antimicrobial agents.  相似文献   

3.
AIMS: To evaluate differences in biofilm or planktonic bacteria susceptibility to be killed by the polyvalent antistaphylococcus bacteriophage K. METHODS AND RESULTS: In this study, the ability of phage K to infect and kill several clinical isolates of Staphylococcus epidermidis was tested. Strains were grown in suspension or as biofilms to compare the susceptibility of both phenotypes to the phage lytic action. Most strains (10/11) were susceptible to phage K, and phage K was also effective in reducing biofilm biomass after 24 h of challenging. Biofilm cells were killed at a lower rate than the log-phase planktonic bacteria but at similar rate as stationary phase planktonic bacteria. CONCLUSIONS: Staphylococcus epidermidis biofilms and stationary growth phase planktonic bacteria are more resistant to phage K lysis than the exponential phase planktonic bacteria. SIGNIFICANCE OF STUDY: This study shows the differences in Staph. epidermidis susceptibility to be killed by bacteriophage K, when grown in biofilm or planktonic phenotypes.  相似文献   

4.
Quorum sensing (QS) system in Pseudomonas aeruginosa may be an important target for pharmacological intervention. The present study aimed to investigate the synergetic activity of sub-MIC concentrations of curcumin (C) with ceftazidime (CAZ) and ciprofloxacin (CIP) against P. aeroginusa QS system. We determined the MIC and synergistic activity of C, CAZ and CIP against P. aeroginusa PAO1 using broth microdilution and checkerboard titration methods. The activity of sub-MIC (1/4 and 1/16 MIC) concentrations of C on the QS signal molecules was assessed using a reporter strain assay. The influence of sub-MIC of C, CAZ and CIP alone and in combination on motility and biofilm formation was also determined and confirmed by RT-PCR to test the expression of QS regulatory genes lasI, lasR, rhlI and rhlR. The addition of C decreased the MIC of CAZ and CIP. Curcumin showed synergistic effects with CAZ and additive activity with CIP. Treated PAO1 cultures in the presence of C showed significant reduction of signals C12-HSL and C4-HSL (P?<?0.05). Sub-MIC concentrations (1/4 and 1/16 MIC) of C, CAZ and CIP alone and in combination significantly reduced swarming and twitching motilities and biofilm formation. Expression of QS regulatory genes lasI, lasR, rhlI, and rhlR using 1/4 MIC of C, CAZ and CIP alone and in combination was repressed significantly relative to untreated PAO1. Our results indicate that a combination of the sub-MIC concentration of C and CAZ exhibited synergism against P. aeroginusa QS system. This combination could lead to the development of a new combined therapy against P. aeruginosa.  相似文献   

5.
AIMS: To determine the efficiency of an electric discharge of the gliding arc type for the destruction of Staphylococcus epidermidis planktonic, adherent and biofilm cells. METHODS AND RESULTS: Bacterial cells were treated in humid air and at atmospheric pressure by a nonthermal quenched plasma of the glidarc type. The kinetics of destruction (followed by plating) were modelled by an Add-inn for Microsoft Excel, GInaFiT. For planktonic cells, log-linear destruction was obtained, whereas biphasic kinetics were observed for sessile cells. An increased resistance of biofilm cells was observed: the reduction of 6 logarithm units of the population was obtained in 15, 30 and 70 min for planktonic, adherent and biofilm cells, respectively. The experiments also show that the cells destruction did not depend on the adhesion surface but was governed by the gap between the target and the plasma source. CONCLUSION: The complete destruction of planktonic, adherent and more resistant biofilm cells of Staph. epidermidis is achieved by a glidarc air plasma at atmospheric pressure. SIGNIFICANCE AND IMPACT OF THE STUDY: The glidarc plasma technology is a promising candidate among the emerging nonthermal techniques for decontamination, as it can destroy even biofilms that are known as particularly resistant to various antimicrobials.  相似文献   

6.
Botelho MG 《Microbios》2000,103(404):31-41
The minimum inhibitory concentrations (MIC) of eight common dental antibacterial agents against three genera of bacteria which have been implicated in dentine caries, namely streptococci, lactobacilli and actinomycetes were investigated. The ultimate aim was to determine the most appropriate antibacterial agent which could be added to dental restorative materials for filling cavities where there was residual dentine caries. The antibacterial agents tested were chlorhexidine diacetate, chlorhexidine dihydrochloride, chlorhexidine gluconate, benzalkonium chloride, cetrimide, cetylpyridinium chloride, thymol and sodium hypochlorite. Thymol and sodium hypochlorite did not inhibit microbial growth at any of the concentrations tested. For the active antibacterial agents tested the MIC values against lactobacilli and streptococci were 0.25 microg/ml to 8.0 microg/ml and for actinomycetes 0.125 to 8.0 microg/ml. These results illustrate the wide spectrum of sensitivity of caries associated bacteria against dental antibacterial agents. From the MIC values alone, it is difficult to recommend which of the active antibacterial agents would be most effective in eliminating cariogenic organisms.  相似文献   

7.
The level of susceptibility of 90 different Staphylococcus aureus strains to chosen quaternary ammonium compounds: cetyltrimethyl ammonium bromide, benzalkonium chloride and benzethonium chloride as well as to chlorhexidine digluconate were examined. The examined strains consist of three groups: hospital originated MRSA, hospital originated MSSA and non-hospital MSSA. The significant differences between these groups were observed in they susceptibility to the investigated disinfectants. The obtained MIC values showed that the most resistant were hospital MRSA strains, where 55% was estimated as resistant to cetyltrimethyl ammonium bromide, 72% were resistant to benzalkonium chloride and benzethonium chloride and 7% were resistant to chlorhexidine digluconate. Among hospital originated MSSA 3% of strains were resistant to cetyltrimethyl ammonium bromide and 6% were resistant to benzalkonium chloride and benzethonium chloride. 14% non-hospital S. aureus strains were resistant to benzalkonium chloride and benzethonium chloride. None were resistant to chlorhexidine digluconate or cetyltrimethyl ammonium bromide.  相似文献   

8.
五倍子水煎剂对表皮葡萄球菌生物膜抑制的研究   总被引:1,自引:0,他引:1  
通过五倍子水煎剂对表皮葡萄球菌MIC测定和生物膜形成干预的研究,为表皮葡萄球菌引起感染提供新的治疗途径。用微量肉汤稀释法分别测定五倍子水煎剂对表皮葡萄球菌的MIC;刚果红及刚果红红霉素、五倍子水煎剂琼脂平板测定表皮葡萄球菌PIA生成与抑制;五倍子水煎剂、红霉素干预表皮葡萄球菌生物膜形成,于光镜和电镜下观察其生物膜形态。134株表皮葡萄球菌五倍子水煎剂的MIC50为0.488 mg/mL,MIC90为0.977 mg/mL。134株表皮葡萄球菌中有50株为PIA阳性,PIA阳性的50株菌全部产生生物膜,红霉素对表皮葡萄球菌生物膜形成有抑制,而五倍子水煎剂则无。表皮葡萄球菌PIA的相互作用在其生物膜的生成中起主要作用;五倍子水煎剂对表皮葡萄球菌生长有明显的抑制但对生物膜形成无干预作用。  相似文献   

9.
10.
The adhesion and subsequent development of Listeria monocytogenes on stainless steel was studied in the absence and in the presence of a Staphylococcus sciuri biofilm. In the three growth media studied, the percentage of adherent cells was reduced to nearly the same extent by the presence of 1-day biofilms of Staph. sciuri for the two strains of L. monocytogenes studied. One-day biofilms of Staph. sciuri exhibited the same exopolysaccharide content per square centimetre, although they colonized from 3.5 to 35% of the stainless steel depending on the growth media. This suggests that extracellular substances rather than cell-to-cell interactions were involved in the decreased adhesion. After 3 days of culture, Staphylococcus biofilms prevented the adherent L. monocytogenes population from increasing within the biofilm, leading to an average logarithmic cfu difference of 0.9-2.7 between the pure and mixed culture. A competition for nutrients by Staph. sciuri was observed in one of the three media. A role for extracellular polysaccharides produced by the Staphylococcus biofilm in preventing the adhesion of L. monocytogenes and in modifying the balance existing between its planktonic and biofilm phase is hypothesized. A higher proportion of L. monocytogenes cells was observed in the planktonic phase in mixed cultures, suggesting that the extracellular substances produced by Staph sciuri biofilms and involved in the decreased adhesion of L. monocytogenes could modify the balance existing between planktonic and biofilm populations. In addition, co-cultures of L. monocytogenes and Staph. sciuri in broth showed competition for nutrients for Staph. sciuri in one of the three media.  相似文献   

11.
Aims: To compare the susceptibility of a 3‐day‐old biofilm and planktonic Salmonella to disinfectants at different exposure times. We hypothesize that Salmonella biofilms are more resilient to disinfectants compared to planktonic Salmonella. Methods and Results: The susceptibility of planktonic cells to disinfectants was tested by a modified version of the Council of Europe suspension test EN 1276. Salmonella biofilms were formed using the Calgary Biofilm Device. Results show that 3‐day‐old Salmonella biofilms are less susceptible to the disinfectants benzalkonium chloride, chlorhexidine gluconate, citric acid, quaternary ammonium compounds, sodium hypochlorite (SH) and ethanol, compared to planktonic Salmonella. Surprisingly, the results also demonstrate that low concentrations of SH were more effective against a 3‐day‐old biofilm compared to high concentrations of SH. Conclusions: While all the disinfectants evaluated were able to reduce biofilm‐associated cells at concentrations and contact times sufficient to eliminate planktonic cells, there were still sufficient viable cells remaining in the biofilm to cause further contamination and potential infection. Significance and Impact of the Study: Protocols for the use of chemical disinfectants need to include biofilm susceptibility testing. There is a requirement for an effective and standardized tool for determining the susceptibility of biofilms to disinfectants.  相似文献   

12.
Pseudomonas aeruginosa causes chronic infections in the lungs of cystic fibrosis (CF) individuals and remains the leading cause of morbidity and mortality associated with the disease. Biofilm growth and phenotypic diversification are factors thought to contribute to this organism's persistence. Most studies have focused on laboratory isolates such as strain PAO1, and there are relatively few reports characterizing the properties of CF strains, especially under decreased oxygen conditions such as occur in the CF lung. This study compared the phenotypic and functional properties of P. aeruginosa from chronically infected CF adults with those of strain PAO1 and other clinical non-CF isolates under aerobic and anaerobic culture conditions. The CF isolates overall displayed a reduced ability to form biofilms in standard in vitro short-term models. They also grew more slowly in culture, and exhibited decreased adherence to glass and decreased motilities (swimming, swarming and twitching). All of these characteristics were markedly accentuated by anaerobic growth conditions. Moreover, the CF strain phenotypes were not readily reversed by culture manipulations designed to encourage planktonic growth. The CF strains were thus inherently different from strain PAO1 and most of the other non-CF clinical P. aeruginosa isolates tested. In vitro models used to research CF isolate biofilm growth need to take the above properties of these strains into account.  相似文献   

13.
In the present study, the use of bacteriophages to prevent growth and/or biofouling by Pseudomonas aeruginosa PAO1 was investigated in microcosms containing Jet A aviation fuel as the carbon source. Bacteriophages were found to be effective at preventing biofilm formation but did not always prevent planktonic growth in the microcosms. This result was at odds with experiments conducted in nutrient-rich medium, demonstrating the necessity to test antimicrobial and antifouling strategies under conditions as near as possible to the ‘real world’. The success of the bacteriophages at preventing biofilm formation makes them potential candidates as antifouling agents for fuel systems.  相似文献   

14.
Aims: The effect of subminimal inhibitory concentrations (sub‐MICs) of cefalexin, ciprofloxacin and roxithromycin was investigated on some virulence factors [e.g. coagulase, Toxic Shock Syndrome Toxin 1 (TSST‐1) and biofilm formation] expressed by Staphylococcus aureus biofilms. Methods and Results: Biofilms were grown with and without the presence of 1/16 MIC of antibiotics on Sorbarod filters. Eluate supernatants were collected, and coagulase and TSST‐1 production were evaluated. Coagulase production was reduced in eluates exposed to roxithromycin when compared to control, while TSST‐1 production was reduced in biofilms exposed to cefalexin and to a lesser extent, ciprofloxacin. In addition, the ability of Staph. aureus to produce biofilm in microtitre plates in the presence of sub‐MIC antibiotics indicated that cefalexin induced biofilm formation at a wide range of sub‐MICs. TSST‐1 produced from the challenged and control biofilms was purified, and its proliferative activity was studied on single cell suspension of mouse splenocytes using MTS/PMS assay. No significant difference in the activity between the treated toxin and the control has been observed. Conclusions: Antibiotics at sub‐MIC levels interfere with bacterial biofilm virulence expression depending on the type and concentration of antibiotic used. Significance and Impact of the Study: The establishment of sub‐MICs of antibiotics in clinical situations may result in altered virulence states in pathogenic bacteria.  相似文献   

15.
We have examined whether assimilation of CO2 can be used as a measure of metabolic activity in planktonic and sessile heterotrophic bacteria. CO2 assimilation by environmental samples and pure cultures of heterotrophic bacteria was studied using 14CO2 and 13CO2 as tracers. Heterotrophic growth on complex organic substrates resulted in assimilation of CO2 into cell biomass by activated sludge, drinking water biofilm, and pure cultures of Escherichia coli ATCC 25922, Es. coli ATCC 13706, Rhodococcus ruber, Burkholderia sp., Bacillus circulans, Pseudomonas putida, Pseudomonas stutzeri, and Pseudomonas aeruginosa. Analysis of 13C-labelled phospholipid fatty acids (PLFAs) confirmed that heterotrophic bacteria may assimilate 13CO2 into cell macromolecules such as membrane lipids. All major PLFAs extracted from activated sludge and drinking water biofilm samples were enriched in 13C after incubation with CO2. Between 1.4% and 6.5% of the biomass produced by cultures of P. putida and a drinking water biofilm during growth in complex media was apparently derived from assimilation of CO2. Resting cells assimilated less CO2 compared to actively growing cells, and CO2 assimilation activity correlated with the amount of biomass produced during heterotrophic growth. The 14CO2 assimilation assay was evaluated as a tool to examine inhibitory effects of biocides on planktonic and sessile heterotrophs (biofilms). On the basis of 14CO2 assimilation activity, the minimum inhibitory concentration (MIC) of benzalkonium chloride was estimated to 21.1 and 127.2 mg l(-1) for planktonic and biofilm samples, respectively. The results indicate that assimilation of isotopically labelled CO2 can be used as a relatively simple measure of metabolic activity in heterotrophic bacteria. CO2 assimilation assays may be used to study the effects of antimicrobial agents on growth and survival of planktonic and sessile heterotrophic organisms.  相似文献   

16.
Yoon MY  Lee KM  Park Y  Yoon SS 《PloS one》2011,6(1):e16105
Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.  相似文献   

17.
Aspergillus fumigatus is often isolated from the lungs of cystic fibrosis (CF) patients, but unlike in severely immunocompromised individuals, the mortality rates are low. This suggests that competition from bacteria within the CF lung may be inhibitory. The purpose of this study was to investigate how Pseudomonas aeruginosa influences A. fumigatus conidial germination and biofilm formation. Aspergillus fumigatus biofilm formation was inhibited by direct contact with P. aeruginosa, but had no effect on preformed biofilm. A secreted heat-stable soluble factor was also shown to exhibit biofilm inhibition. Coculture of P. aeruginosa quorum-sensing mutants (PAO1:ΔLasI, PAO1:ΔLasR) did not significantly inhibit A. fumigatus biofilms (52.6-58.8%) to the same extent as that of the PA01 wild type (22.9-30.1%), both by direct and by indirect interaction (P<0.001). Planktonic and sessile inhibition assays with a series of short carbon chain molecules (decanol, decanoic acid and dodecanol) demonstrated that these molecules could both inhibit and disrupt biofilms in a concentration-dependent manner. Overall, this suggests that small diffusible and heat-stable molecules may be responsible for the competitive inhibition of filamentous fungal growth in polymicrobial environments such as the CF lung.  相似文献   

18.
19.
Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose‐ and time‐dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5–500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9‐22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries.  相似文献   

20.
Serratia marcescens (11 of 12 strains) demonstrated an ability to grow in certain chlorhexidine-based disinfecting solutions recommended for rigid gas-permeable contact lenses. For a representative strain, cells that were grown in nutrient-rich medium, washed, and inoculated into disinfecting solution went into a nonrecoverable phase within 24 h. However, after 4 days, cells that had the ability to grow in the disinfectant (doubling time, g = 5.7 h) emerged. Solutions supporting growth of S. marcescens were filter sterilized. These solutions, even after removal of the cells, showed bactericidal activity against Pseudomonas aeruginosa and a biphasic survival curve when rechallenged with S. marcescens. Adaptation to chlorhexidine by S. marcescens was not observed in solutions formulated with borate ions. For chlorhexidine-adapted cells, the MIC of chlorhexidine in saline was eightfold higher than that for unadapted cells. Cells adapted to chlorhexidine showed alterations in the proteins of the outer membrane and increased adherence to polyethylene. Cells adapted to chlorhexidine persisted or grew in several other contact lens solutions with different antimicrobial agents, including benzalkonium chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号