首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paired, electrotonically coupled neurosecretory Canopy Cells (CC) of the pond snail Lymnaea stagnalis were microiontophoretically injected with horseradish peroxidase (HRP). Whole mount preparations and ultrathin sections of injected CC were studied to describe in detail the morphology of the CC, their axon tracts and neurohaemal areas. The CC release their secretory product at three different sites, viz. from the soma and from axon terminals in the intercerebral commissure and in the median lip nerve. Neural control over the CC occurs by few synapses found exclusively on the CC axon, not on the cell body. One type of "en passant" synapse was identified. Two morphologically distinct types of synapselike structures (SLS) are numerous. The site of electrotonic coupling between the two CC is most probably located in the cerebral commissure. Serial sectioning showed that the axons contact each other over more than 130 micrometers. The contact is very intimate and the axon membranes interdigitate in a complex manner. Gap junctions, which are often described as the sites of electrotonic coupling, were not found.  相似文献   

2.
The cardiac ganglion in the lobster Homarus americanus was examined with a transmission electron microscope. Nerve terminals often existed in large aggregations surrounded by glial and connective tissue elements. Axo-axonic and axo-dendritic synapses were present. Six ultrastructurally different types of nerve terminal, each containing an abundance of vesicles, were distinguished: three formed discrete chemical synapses as indicated by typical release site morphology; three did not. The latter appear to be neurosecretory axon terminals of extrinsic neurons. More than one morphologically distinct type of synaptic vesicle occurred commonly in a given terminal, suggesting the presence of coexisting neurotransmitters and/or neuroregulatory factors. Symmetrical chemical synapses and electrotonic junctions between axons were present.  相似文献   

3.
Summary The ultrastructure of release sites of neurochemical messenger substances in the microturbellarian Microstomum lineare was examined. Aminergic neurites form conventional synapses and synapse-like structures (SLS). Variants of true synapses include: single synapses with symmetric pre- and postsynaptic densities, shared synapses, i.e., contacts between 1 pre- and 2 postsynaptic fibres, en passant synapses between parallel axonal membranes, and synapses without thickenings having only clustered vesicles in the presynaptic terminal. SLS on a nerve cell soma or facing an intercellular stromal channel near muscles are described. Peptidergic neurites containing large granular vesicles (LGV) form synaptoids and signs of putative neurosecretory release. Synaptoids between neurites and between neurite and muscle have lucent vacuoles (about 100nm) and dense material at the contact site. In en passage synaptoids dense-core vesicles are embedded in electron-dense material at the contact site. Putative signs of release of neurosecretory material other than typical exocytosis have been observed.  相似文献   

4.
Using transmission electron microscopy of serially sectioned tentacles from the sea anemone Aiptasia pallida, we located and characterized two types of neuro‐spirocyte synapses. Clear vesicles were observed at 10 synapses and dense‐cored vesicles at five synapses. The diameters of vesicles at each neuro‐spirocyte synapse were averaged; clear vesicles ranged from 49–89 nm in diameter, whereas the dense‐cored vesicles ranged from 97–120 nm in diameter. One sequential pair of synapses included a neuro‐spirocyte synapse with clear vesicles (81 nm) and a neuro‐neuronal synapse with dense‐cored vesicles (168 nm). A second synapse on the same cell had dense‐cored vesicles (103 nm). An Antho‐RFamide‐labeled ganglion cell and three different neurites were observed adjacent to spirocytes, but no neuro‐spirocyte synapses were present. Many of the spirocytes also were immunoreactive to Antho‐RFamide. The presence of sequential neuro‐neuro‐spirocyte synapses suggests that synaptic modulation may be involved in the neural control of spirocyst discharge. The occurrence of either dense‐cored or clear vesicles at neuro‐spirocyte synapses suggests that at least two types of neurotransmitter substances control the discharge of spirocysts in sea anemones. J. Morphol. 241:165–173, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
1. There is a bilaterally symmetric pair of large serotonin-containing neurones in the cerebral ganglia of Planorbis corneus. 2. In some animals these neurones are connected by a non-rectifying electrotonic synapse, and fire in synchrony even at prolonged high frequency. In other animals the neurones are not coupled, and fire independently except when driven by common input. Occasionally the coupling is weak. 3. Both coupled and non-coupled serotonin neurones have processes in the major nerve trunks of both buccal ganglia. 4. Synapses are made with many neurones in the buccal ganglia. The serotonin neurones can initiate firing in several motoneurones and thus produce movements of the buccal mass. 5. During spontaneous feeding cycles the input and firing pattern of the serotonin neurones do not bear any obvious relation to the movements of the buccal mass. 6. The data suggest that the serotonin neurones are modulatory cells, altering the level of excitability of buccal ganglion neurones.  相似文献   

6.
The synaptic inputs and outputs of the major interneuron L10 of the abdominal ganglion of Aplysia were studied using an intracellular staining technique for the electron microscope. The sites of both the chemical synaptic input and output of L10 are localized to the dendritic arborizations that arise from the axon in the ganglion neuropil. Thus, the interneuronal functions are mediated at the dendritic processes and could occur in the absence of spiking in the axon and cell body. The sites of L10 synaptic output are presumed to be at. aggregations of vesicles and mitochondria in the dendrites. The synaptic vesicle content of L10, a cholinergic neuron, with many large dense vesicles resembles that described for serotonergic cells in Aplysia, making distinction of synaptic pharmacology by ultrastructure difficult. Focal membrane specializations with a clear synaptic cleft were not observed between L10 and its large population of postsynaptic cells. In contrast, clear focal input sites were frequently found on L10. Gap junctions, sites of probable electrical coupling between L10 and other neurons, were also found. These observations are discussed as evidence that many synapses do not have focal specializations.  相似文献   

7.
Contacts between small unmyelinated nerve fibres and dermal melanophores of the angelfish, Pterophyllum scalare, exhibit several features characteristic of synapses, including small synaptic vesicles and dense core vesicles, a narrow synaptic cleft, electron-dense material at the postsynaptic membrane (cell membrane of the melanophore) and, occasionally, presynaptic densities. An analysis of serial thin sections shows that the synapses described here represent varicosities of an otherwise more or less straight nerve fibre. A single axon thereby may form several en passant synapses with a single melanophore. It is suggested that the synaptic contacts described here not only represent sites of transmitter release but also play a role as sites of firm attachment between nerves and melanophores which guarantee a stable arrangement of nerve fibres and melanophores.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

8.
The synaptic inputs and outputs of the major interneuron L10 of the abdominal ganglion of Aplysia were studied using an intracellular staining technique for the electron microscope. The sites of both the chemical synaptic input and output of L10 are localized to the dendritic arborizations that arise from the axon in the ganglion neuropil. Thus, the interneuronal functions are mediated at the dendritic processes and could occur in the absence of spiking in the axon and cell body. The sites of L10 synaptic output are presumed to be at aggregations of vesicles and mitochondria in the dendrites. The synaptic vesicle content of L10, a cholinergic neuron, with many large dense vesicles resembles that described for serotonergic cells in Aplysia, making distinction of synaptic pharmacology by ultrastructure difficult. Focal membrane specializations with a clear synaptic cleft were not observed between L10 and its large population of postsynaptic cells. In contrast, clear focal input sites were frequently found on L10. Gap junctions, sites of probable electrical coupling between L10 and other neurons, were also found. These observations are discussed as evidence that many synapses do not have focal specializations.  相似文献   

9.
Scanning and transmission electron microscopy of the pharynx of the sea anemone Aiptasia pallida revealed a heavily ciliated epidermis and two types of gland cells not known previously to be innervated. By tracing serial cross sections of the pharynx, we located and characterized two types of neuroglandular synapses (i.e., those having clear vesicles and those with dense-cored vesicles). The diameters of the vesicles at each synapse were averaged; clear vesicles ranged from 70 to 103 nm in diameter and were observed at synapses to both mucous and zymogenic gland cells. Dense-cored vesicles ranged from 53 to 85 nm in diameter and were observed at synapses to two mucous gland cells. One mucous gland cell had three neuroglandular synapses, one with clear vesicles and two with dense-cored vesicles. The occurrence of either clear or dense-cored vesicles at neuroglandular synapses suggests that at least two types of neurotransmitter substances control the secretion of mucus in the sea anemone pharynx. To date, only clear vesicles have been observed at a neurozymogenic gland cell synapse in the pharynx. No evidence of immunoreactivity to phenylethanolamine-N-methyl transferase was observed at neuroglandular synapses, suggesting that adrenaline is not a transmitter in the pharynx of A. pallida.  相似文献   

10.
SYNAPSES IN THE CENTRAL NERVOUS SYSTEM   总被引:8,自引:4,他引:4       下载免费PDF全文
A number of different synapses have been described in the medulla, cerebellar cortex, and cerebral cortex of the rat. All of these possess the same fundamental fine structure as follows: 1. Close apposition of the limiting membranes of presynaptic and postsynaptic cells without any protoplasmic continuity across the synapse. The two apposed membranes are separated by a cleft about 200 A wide, and display localized regions of thickening and increased density. 2. The presynaptic expansion of the axon, the end-foot or bouton terminal, contains a collection of mitochondria and clusters of small vesicles about 200 to 650 A in diameter. Although the significance of these structures in the physiology of the synapse is still unknown, two suggestions are made: that the mitochondria, by means of the relation between their enzymatic activity and ion transport, participate in the electrical phenomena about the synapse; and that the small synaptic vesicles provide the morphological representation of the prejunctional, subcellular units of neurohumoral discharge at the synapse demanded by physiological evidence.  相似文献   

11.
Summary The ultrastructure of synapses between the cord giant fibres (lateral and medial) and the motor giant fibres in crayfish, Astacus pallipes, third abdominal ganglia have been examined. These electrotonic synapses are asymmetrical, they have synaptic vesicles only in the presynaptic fibre, and they have synaptic cleft widths normally of about 100 Å but narrowed to about 50 Å in restricted areas. Localized increases in density of the synaptic cleft and adjacent membranes also occur within a synapse, and synaptic vesicles are most tightly grouped at the membrane in such areas. Tight or gap junctions with 30 Å or narrower widths have not been found, but the junctions probably function in a similar way to gap junctions.Three small nerves are closely associated with the synapses between the giant fibres. One of these small nerves has round synaptic vesicles and is thought to be excitatory on morphological grounds; one has flattened vesicles and is thought to be inhibitory; and one is postsynaptic to the lateral giant and the two small presynaptic nerves. It is proposed that these small nerves modulate activity in the much larger giant fibre synapse.  相似文献   

12.
The efficacy of action potential evoked neurotransmitter release varies widely even among synapses supplied by the same axon, and the number of release-ready vesicles at each synapse is a major determinant of this heterogeneity. Here we identify a second, equally important, mechanism for release heterogeneity at small hippocampal synapses, the inter-synaptic variation of the exocytosis probability of release-ready vesicles. Using concurrent measurements of vesicular pool sizes, vesicular exocytosis rates, and presynaptic Ca2+ dynamics, in the same small hippocampal boutons, we show that the average fusion probability of release-ready vesicles varies among synapses supplied by the same axon with the size of the spike-evoked Ca2+ concentration transient. We further show that synapses with a high vesicular release probability exhibit a lower Ca2+ cooperativity, arguing that this is a direct consequence of increased Ca2+ influx at the active zone. We conclude that variability of neurotransmitter release under basal conditions at small central synapses is accounted for not only by the number of release-ready vesicles, but also by their fusion probabilities, which are set independently of bouton size by variable spike-evoked presynaptic Ca2+ influx.

Author Summary

Synaptic transmission underlies information transfer among neurons in the brain. The probability that a synapse will release neurotransmitter in response to an action potential varies widely, even among synapses supplied by the same axon. The molecular mechanisms underlying this heterogeneity remain poorly understood. At the level of single synapses, release efficacy is determined largely by two factors: (i) the number of neurotransmitter-containing vesicles ready to be released, and (ii) by the fusion probabilities of these vesicles. By using novel imaging techniques at individual hippocampal presynaptic boutons in culture, we distinguish two independent sources of variability of release probability in small central synapses. First, we find differences in the number of releasable vesicles, and second, we find differences in the exocytosis probability of individual vesicles. To our knowledge, this is the first direct experimental demonstration that the fusion probability of release-ready vesicles is variable among synapses supplied by a single axon, and contributes roughly as much to the overall variability in release probability as does the number of release-ready vesicles.  相似文献   

13.
A diverse afferent synaptic input to immunostained oxytocin magnocellular neurons of the paraventricular nucleus of the rat hypothalamus is described. By electron microscopy, immunoreactive material is present within cell bodies and neuronal processes and it is associated primarily with neurosecretory granules and granular endoplasmic reticulum. Afferent axon terminals synapse on perikarya, dendritic processes, and possibly axonal processes of oxytocin-containing neurons. The presynaptic elements of the synaptic complexes contain clear spherical vesicles, a mixture of clear spherical and ellipsoidal vesicles, or a mixture of clear and dense-centered vesicles. The postsynaptic membranes of oxytocinergic cells frequently show a prominent coating of dense material on the cytoplasmic face which gives the synaptic complex a marked asymmetry.  相似文献   

14.
Neuromuscular synapses of pyloric muscle P1 in the blue crab Callinectes sapidus were examined using electrophysiological and electron microscopic methods. The muscle is innervated by a single excitatory axon of the stomatogastric ganglion. Excitatory postsynaptic potentials show striking facilitation at very low frequencies of stimulation, indicating very slow decay of the facilitation process after a single nerve impulse. Quantal content of transmitter release at a low frequency of stimulation averaged 1.5. Evidence was obtained that not all synapses on a muscle fiber are equivalent. This was particularly evident at the morphological level in serially sectioned nerve terminals. On each nerve terminal examined, a wide range of synapse sizes was found. Synaptic contact areas ranged from less than 0.5 micron2 to almost 10 micron2; the latter value is large compared with those obtained for other crustacean neuromuscular synapses. Most of the smaller synapses lacked the presynaptic dense bodies which are putative release sites for the transmitter substance. The larger synapses all had presynaptic dense bodies, and some showed evidence of splitting apart into smaller subunits. It is postulated that about half the morphologically identified synapses are relatively inactive.  相似文献   

15.
Close appositions between axonal membranes are present in the septum between adjacent axonal segments of the septate or lateral giant axons of the crayfish Procambarus. In sections the closely apposed membranes appear separated by a space or gap. The use of lanthanum indicates that there may be structures connecting the apposed membranes. The apparent gap is actually a network of channels continuous with the extracellular space. Adjacent axonal segments are electrotonically coupled at the septa. The coupling resistance is increased by mechanical injury of an axon, immersion in low Cl- solutions, and immersion in low Ca++ solutions, followed by a return to normal physiological solution. Septa at which coupling resistance had been measured were examined in the electron microscope. The induced increases in coupling resistance are associated with separation of the junctional membranes (with the exception of the moderate increases during immersion in low Ca++ solutions). Schwann cell processes are present between the separated axonal membranes. When nerve cords in low Cl- solutions are returned to normal physiological solution, coupling, i.e., electrotonic synapses. A model of an electrotonic synapse is proposed in which tween axonal membranes are again found. The association between the morphological and physiological findings provides further evidence that the junctions are the sites of electrotonic coupling, i.e., electrotonic, synapses. A model of an electrotonic synapse is proposed in which intercytoplasmic channels not open to the extracellular space are interlaced with a hexagonal network of extracellular channels between the apposed junctional membranes.  相似文献   

16.
The axonal branching pattern of the two cerebral giant neurones (CGCs) of Lymnaea stagnalis was studied with intrasomatically applied horseradish peroxidase. The cells are symmetrical. Each CGC projects to the ipsilateral n. labialis medius and n. arteriae labialis, the subcerebral commissure, and to all ipsi- and contralateral buccal nerves. The contralateral buccal nerves are reached via the ipsilateral cerebro-buccal connective and the buccal commissure. The CGC fire action potentials 1:1 in a driver-follower relationship. Each cell is capable of both driving and following. The relationship depends on the membrane potentials of the somata. In driving CGC spikes are initiated in a cerebral spike trigger zone located near the soma. In following cells spikes are initiated in a distal zone located in the buccal ganglia. The buccal zone is only affected by the partner CGC. CGC are synchronized by three coupling mechanisms: mutual excitatory chemical synapses, electrotonic coupling, and common input. The chemical and electrotonic connections are located in the buccal ganglia. All spikes are relayed to the partner cell via the chemical synapses. The electrotonic coupling improves the efficiency of the chemical synapses. The dual connection selectively synchronizes the CGC-axonal spikes from each side of the buccal mass. Common excitatory input affects the cerebral spike trigger zones and can initiate simultaneous spikes in both cells. This results in bilateral synchrony of spikes in the CGC-axons in both the buccal and the lip nerves.  相似文献   

17.
The synapse-bearing nerve terminals of the opener muscle of the crayfish Procambarus were reconstructed using electron micrographs of regions which had been serially sectioned. The branching patterns of the terminals of excitatory and inhibitory axons and the locations and sizes of neuromuscular and axo-axonal synapses were studied. Excitatory and inhibitory synapses could be distinguished not only on the basis of differences in synaptic vesicles, but also by a difference in density of pre- and postsynaptic membranes. Synapses of both axons usually had one or more sharply localized presynaptic "dense bodies" around which synaptic vesicles appeared to cluster. Some synapses did not have the dense bodies. These structures may be involved in the physiological activity of the synapse. Excitatory axon terminals had more synapses, and a larger percentage of terminal surface area devoted to synaptic contacts, than inhibitory axon terminals. However, the largest synapses of the inhibitory axon exceeded in surface area those of the excitatory axon. Both axons had many side branches coming from the main terminal; often, the side branches were joined to the main terminal by narrow necks. A greater percentage of surface area was devoted to synapses in side branches than in the main terminal. Only a small fraction of total surface area was devoted to axo-axonal synapses, but these were often located at narrow necks or constrictions of the excitatory axon. This arrangement would result in effective blockage of spike invasion of regions of the terminal distal to the synapse, and would allow relatively few synapses to exert a powerful effect on transmitter release from the excitatory axon. A hypothesis to account for the development of the neuromuscular apparatus is presented, in which it is suggested that production of new synapses is more important than enlargement of old ones as a mechanism for allowing the axon to adjust transmitter output to the functional needs of the muscle.  相似文献   

18.
Westfall  Jane A. 《Hydrobiologia》2004,530(1-3):117-121
Our previously published studies are here reviewed detailing neuro-cnidocyte synapses, demonstrating putative neurotransmitter substances, and identifying complex neural pathways in sea anemones. Synapses were traced to their contacts on nematocytes and spirocytes by transmission electron microscopy of serial thin sections of tentacles. In five animals, cells containing microbasic p-mastigophores had synapses with clear vesicles, whereas cells containing basitrichous isorhizas had synapses with dense-cored vesicles, providing preliminary evidence for a selectivity of neurotransmitter types for different nematocysts. Either clear or dense-cored synaptic vesicles were also present at neuro-spirocyte contacts. Antho-RFamide immunoreactivity occurred in some anthozoan synaptic vesicles and immunogold labeling of serotonin was found at a neuro-spirocyte synapse. Neural pathways included direct innervation of spirocytes by sensory cells, sequential neuro-neuro-spirocyte and neuro-neuro-nematocyte synapses and reciprocal synapses involving axons of both sensory cells and ganglion cells. Such synaptic patterns resemble neuro-effector pathways found in higher animals and lay to rest the independent effector hypothesis for cnidocyte discharge in tentacles of sea anemones.  相似文献   

19.
Smith U 《Tissue & cell》1970,2(3):427-433
The mechanism of release of neurosecretory products from the corpus cardiacum of the stick insect Carausius morosus is discussed. Results of experiments using ferritin as an exogenous marker show a) direct communication between the cavity of the larger (2000 A diameter) vesicles and extracellular space at the axon periphery, and b) ferritin also occurs in smaller vesicles (300 A diameter) derived, by a process similar to pinocytosis, from the axon surface. These findings are discussed in relation to exocytosis and the implications of this mode of release in terms of membrane turnover. It is suggested that neurosecretory products are released into the haemolymph by fusion between the limiting membrane of the neurosecretory droplet and the axon membrane. Small vesicles may be involved in retrieval of membrane material, countering that added in the above way.  相似文献   

20.
Bassoon speeds vesicle reloading at a central excitatory synapse   总被引:1,自引:0,他引:1  
Sustained rate-coded signals encode many types of sensory modalities. Some sensory synapses possess specialized ribbon structures, which tether vesicles, to enable high-frequency signaling. However, central synapses lack these structures, yet some can maintain signaling over a wide bandwidth. To analyze the underlying molecular mechanisms, we investigated the function of the active zone core component Bassoon in cerebellar mossy fiber to granule cell synapses. We show that short-term synaptic depression is enhanced in Bassoon knockout mice during sustained high-frequency trains but basal synaptic transmission is unaffected. Fluctuation and quantal analysis as well as quantification with constrained short-term plasticity models revealed that the vesicle reloading rate was halved in the absence of Bassoon. Thus, our data show that the cytomatrix protein Bassoon speeds the reloading of vesicles to release sites at a central excitatory synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号