首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文探讨巨噬细胞集落刺激因子(M-CSF)对人乳腺癌MCF-7细胞糖代谢的影响及其机制. 构建胞质稳定转染 M-CSF的MCF-7细胞(MCF-7-M);ATP检测试剂盒检测MCF-7和MCF-7-M细胞的ATP生成;葡萄糖测定试剂盒、乳酸测试盒检测MCF-7和MCF-7-M细胞的葡萄糖摄取和乳酸分泌情况;蛋白质印迹法检测在糖酵解抑制剂2-脱氧葡萄糖(2-DG)和氧化磷酸化抑制剂OLIG处理后,M-CSF对MCF-7细胞的糖酵解关键酶:己糖激酶2(HK2)、丙酮酸激酶M2(PKM2)及葡萄糖转运体1(GLUT-1)表达的影响;MTT法检测在ATP消耗剂3-溴丙酮酸(3-BrPA)处理后,MCF-7和MCF-7-M细胞对5-FU敏感性的变化. 结果发现:MCF-7-M细胞的ATP水平显著高于MCF-7细胞(P<0.05);2-DG降低了MCF-7和MCF-7-M细胞的ATP水平,并且降低MCF-7-M细胞ATP的效果更明显(P<0.01);MCF-7-M细胞的糖摄取能力和乳酸分泌量显著高于MCF-7细胞(P<0.01),经API-2处理后,MCF-7和MCF-7-M细胞葡萄糖消耗和乳酸分泌量均显著减少(P<0.01);MCF-7-M细胞GLUT-1、HK2和PKM2的表达显著高于MCF-7细胞(P<0.01);LY294002和API-2均可抑制MCF-7-M细胞GLUT-1的表达(P<0.05);用3-BrPA处理后,MCF-7-M和MCF-7细胞对5-FU的药物敏感性显著增强(P<0.01). 综上,得出结论: 胞质M-CSF通过诱导GLUT-1、HK2和PKM2的表达,活化MCF-7细胞糖酵解途径;PI3K/AKT信号通路参与胞质M-CSF活化MCF-7细胞的糖酵解途径.  相似文献   

2.
目的:高血糖易引起胆固醇在体内积聚,增加糖尿病合并动脉粥样硬化性心血管疾病的患病风险。本文通过建立稳定的实时定量PCR芯片(Real-time quantitative polymerasechain reaction array,qPCR array)检测方案,研究高糖对小鼠肝癌细胞Hepa1-6胆固醇合成基因表达的影响,探讨胆固醇合成基因在糖尿病大血管并发症发展中的作用机制。方法:以不同浓度葡萄糖(5、15、30mmo/L)和不同时间(0、6、12、18、24 h),刺激肝癌细胞Hepa1-6,利用qPCR array检测其胆固醇合成基因的表达差异。结果:与5mmol/L相比,高糖组(15、30 mmo/L)处理细胞18 h后,胆固醇合成基因CYP51、EBP、NSDHL、SQLE、FDFT1和PMVK的表达上调(P0.05),呈现剂量依赖性。与0 h相比,15 mmol/L高糖处理细胞12 h,CYP51、EBP和SQLE mRNA表达量上调(P0.01)。至24 h,CYP51、EBP降至0 h水平,而SQLE的表达量继续增加;NSDHL在12 h表达无差异,至18 h表达量发生上调(P0.05)。结论:该qPCR array检测方案能特异性检测胆固醇合成基因的表达量。高糖能够促进胆固醇合成基因的表达,使细胞内胆固醇积聚,这可能是糖尿病患者容易发生动脉粥样硬化的原因。这提示我们将胆固醇合成基因作为药物靶点可能延缓糖尿病动脉粥样硬化进展。  相似文献   

3.
Human prostate cancer LNCaP cells including C-33 and C-81 cells were originally derived from the lymph nodes of a patient with metastatic prostate cancer. These two cells were employed for characterization of L-selectin ligand and in vitro tumorigenicity, because they mimic the clinical conditions of early and late-stage human prostate cancer. C-81 cells exhibit higher in vitro migratory and invasive properties as compared with C-33 cells. We find that the L-selectin ligand and mucin glycan-associated MECA-79 epitope were elevated in C-81 cells. An increase of these glycotopes positively correlates with elevated tumorigenicity and expression of key glycosyl- and sulfotransferase genes. These results suggest that modulated expression of selective glycogenes correlates with altered tumorigenicity of cancer cells.  相似文献   

4.
5.
After addition of 5 mM sulfite or nitrite to glucose-metabolizing cells of Saccharomyces cerevisiae a rapid decrease of the ATP content and an inversely proportional increase in the level of inorganic phosphate was observed. The concentration of ADP shows only small and transient changes. Cells of the yeast mutant pet 936, lacking mitochondrial F1ATPase, after addition of 5 mM sulfite or nitrite exhibit changes in ATP, ADP and inorganic phosphate very similar to those observed in wild type cells. They key enzyme of glucose degradation, glyceraldehyde-3-phosphate dehydrogenase was previously shown to be the most sulfiteor nitrite-sensitive enzyme of the glycolytic pathway. This enzyme shows the same sensitivity to sulfite or nitrite in cells of the mutant pet 936 as in wild type cells. It is concluded that the effects of sulfite or nitrite on ATP, ADP and inorganic phosphate are the result of inhibition of glyceraldehyde-3-phosphate dehydrogenase and not of inhibition of phosphorylation processes in the mitochondria. Levels of GTP, UTP and CTP show parallel changes to ATP. This is explained by the presence of very active nucleoside monophosphate kinases which cause a rapid exchange between the nucleoside phosphates. The effects of the sudden inhibition of glucose degradation by sulfite or nitrite on levels of ATP, ADP and inorganic phosphate are discussed in terms of the theory of Lynen (1942) on compensating phosphorylation and dephosphorylation in steady state glucose metabolizing yeast.Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - Pi inorganic orthophosphate Dedicated to Prof. Dr. Hans Grisebach on the occasion of his sixtieth birthday  相似文献   

6.
7.
MicroRNA-372 (miR-372) has been demonstrated to play a crucial role in cellular proliferation and apoptosis of cancer cells. However, its effects in hepatocellular carcinoma (HCC) have not been explored. The aim of this study was to investigate the clinical significance of miR-372 in human HCC. Quantitative RT-PCR was performed to detect miR-372 expression in HCC clinical samples and cell lines. Then, Kaplan–Meier and Cox proportional regression analyses were performed to determine the association of miR-372 expression with survival of HCC patients. Moreover, the effects of miR-372 on tumorigenicity of HCC cell lines were evaluated by in vitro assays. miR-372 expression in HCC tissues was significantly higher than in the corresponding normal adjacent liver tissues (P < 0.001). There was a correlation between miR-372 upregulation and advanced TNM stage of HCC patients (P = 0.02). In addition, HCC patients with higher miR-372 expression had significantly poorer recurrence-free survival (P = 0.006) and overall survival (P = 0.001). Multivariate analysis revealed that high miR-372 expression was an independent predictor of poor prognosis (for recurrence-free survival: Hazard Ratio [HR] 6.826, P = 0.01; for overall survival: HR 9.533, P = 0.008). Moreover, in vitro assays demonstrated that the ectopic expression of miR-372 may significantly promote the cellular proliferation, invasion, and migration of HCC cell lines. Our findings showed that miR-372 may serve as a potent prognostic marker for tumor recurrence and survival of HCC patients. Furthermore, miR-372 has been identified as a promoter for tumorigenicity of HCC cells, suggesting that it might be a prospective therapeutic target for HCC.  相似文献   

8.
Objective: Alternate day fasting may extend lifespan in rodents and is feasible for short periods in nonobese humans. The aim of this study was to examine the effects of 3 weeks of alternate day fasting on glucose tolerance and skeletal muscle expression of genes involved in fatty acid transport/oxidation, mitochondrial biogenesis, and stress response. Research Methods and Procedures: Glucose and insulin responses to a standard meal were tested in nonobese subjects (eight men and eight women; BMI, 20 to 30 kg/m2) at baseline and after 22 days of alternate day fasting (36 hour fast). Muscle biopsies were obtained from a subset of subjects (n = 11) at baseline and on day 21 (12‐hour fast). Results: Glucose response to a meal was slightly impaired in women after 3 weeks of treatment (p < 0.01), but insulin response was unchanged. However, men had no change in glucose response and a significant reduction in insulin response (p < 0.03). There were no significant changes in the expression of genes involved in mitochondrial biogenesis or fatty acid transport/oxidation, although a trend toward increased CPT1 expression was observed (p < 0.08). SIRT1 mRNA expression was increased after alternate day fasting (p = 0.01). Discussion: Alternate day fasting may adversely affect glucose tolerance in nonobese women but not in nonobese men. The gene expression results indicate that fatty acid oxidation and mitochondrial biogenesis are unaffected by alternate day fasting. However, the increased expression in SIRT1 suggests that alternate day fasting may improve stress resistance, a commonly observed feature of calorie‐restricted rodents.  相似文献   

9.
Mitochondrial apparatus is a fundamental aspect in cell, serving for amino acid biosynthesis, fatty acid oxidation (FAO), and ATP production. In this article, we investigated the change of mitochondrial oxidative capacity during porcine adipocyte differentiation and in response to leptin. Rhodamine 123 staining analysis showed about 2-fold increase of mitochondrial membrane electric potential in differentiated adipocyte in comparison with preadipocyte. The mRNA expression of Cytochromes c (Cyt c), carnitine palmitoyltransferase 1 (CPT1), and malate dehydrogenases (MDH) increased markedly (P < 0.05), but that of UCP2 decreased (P < 0.05). Moreover PGC-1α and UCP3 was very low and showed no changes during the adipocyte differentiation. The protein expression of Cyt c and the enzyme activity of Cytochrome c oxidase (COX) increased with preadipocyte differentiation, but cellular ATP level decreased. Furthermore, at the level of 10 and 100 ng/ml leptin not only selectively increased the gene expression of PGC-1α, CPT1, Cyt c, UCP2, and UCP3 (P < 0.05), but also enhanced COX enzyme activity which related to mitochondrial FAO. There is no change of Mitochondrial membrane electric potential and ATP level in cell treated by leptin. These results suggested Mitochondrial is not only critical in FAO, but also play an important role in adipogenesis.  相似文献   

10.
目的:探讨GPC3(glypican 3)在肝癌细胞糖酵解中的调控作用。方法:采用si RNA(small interfering RNA)干扰肝癌细胞中GPC3的表达后,采用q PCR(quantitative PCR)与Western blot实验检测肿瘤糖酵解关键调控分子Glut1(glucose transporter-1)、HK2(hexokinase 2)与LDH-A(Lactate Dehydrogenase A)的表达,通过检测培养液中葡萄糖的减少量分析GPC3对细胞葡萄糖摄取情况,通过检测培养液中乳酸含量与PH值分析GPC3对细胞乳酸产生的影响,通过检测细胞的氧耗速率,分析GPC3对线粒体氧化磷酸化功能的影响。结果:干扰肝癌细胞中GPC3的表达可抑制糖酵解关键调控分子Glut1、HK2与LDH-A表达,降低肝癌细胞葡萄糖摄取速率和细胞氧耗速率,且细胞培养液PH升高,乳酸产生减少。结论:肝癌细胞中GPC3高表达通过上调糖酵解关键调控分子Glut1、HK2与LDH-A表达而促进肝癌细胞糖酵解效应,同时抑制线粒体氧化磷酸化活性。这些结果进一步提示糖代谢重编程可能是GPC3促进肝癌增殖与转移的重要机制。  相似文献   

11.
《Cytotherapy》2014,16(9):1197-1206
Background aimsThe aim of the study was to evaluate the effect of mesenchymal stromal cells (MSCs) on tumor cell growth in vitro and in vivo and to elucidate the apoptotic and anti-proliferative mechanisms of MSCs on a hepatocellular carcinoma (HCC) murine model.MethodsThe growth-inhibitory effect of MSCs on the Hepa 1–6 cell line was tested by means of methyl thiazolyl diphenyl-tetrazolium assay. Eighty female mice were randomized into four groups: group 1 consisted of 20 mice that received MSCs only by intrahepatic injection; group 2 consisted of 20 HCC mice induced by inoculation of Hepa 1–6 cells into livers without MSC treatment; group 3 consisted of 20 mice that received MSCs after induction of liver cancer; group 4 consisted of 20 mice that received MSCs after induction of liver cancer on top of induced biliary cirrhosis.ResultsMSCs exhibited a growth-inhibitory effect on Hepa 1–6 murine cell line in vitro. Concerning in vivo study, decreases of serum alanine transaminase, aspartate transaminase and albumin levels after MSC transplantation in groups 2 and 3 were found. Gene expression of α-fetoprotein was significantly downregulated after MSC injection in the HCC groups. We found that gene expression of caspase 3, P21 and P53 was significantly upregulated, whereas gene expression of Bcl-2 and survivin was downregulated in the HCC groups after MSC injection. Liver specimens of the HCC groups confirmed the presence of dysplasia. The histopathological picture was improved after administration of MSCs to groups 2 and 3.ConclusionsMSCs upregulated genes that help apoptosis and downregulated genes that reduce apoptosis. Therefore, MSCs could inhibit cell division of HCC and potentiate their death.  相似文献   

12.
13.
14.
15.
The aim of this study was to investigate the variations in meat quality, lipid metabolism-related genes, myosin heavy chain (MyHC) isoform genes and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) gene mRNA expressions in longissimus dorsi muscle (LM) of two different pig breeds. Six Rongchang and six Landrace barrows were slaughtered at 161 days of age. Subsequently, meat quality traits and gene expression levels in LM were observed. Results showed that Rongchang pigs not only exhibited greater pH, CIE a*24 h and intramuscular fat content but also exhibited lower body weight, carcass weight, dressing percentage, LM area and CIE b*24 h compared with Landrace pigs (P<0.05). Meanwhile, the mRNA expression levels of the lipogenesis (peroxisome proliferator-activated receptor gamma, acetyl-CoA carboxylase and fatty acid synthase) and fatty acid uptake (lipoprotein lipase)-related genes were greater in the Rongchang (P<0.05), whereas the lipolysis (adipose triglyceride lipase and hormone sensitive lipase) and fatty acid oxidation (carnitine palmitoyltransferase-1B)-related genes were better expressed in the Landrace. Moreover, compared with the Landrace, the mRNA expression levels of MyHCI, MyHCIIa and MyHCIIx were greater, whereas the mRNA expression levels of MyHCIIb were lower in the Rongchang pigs (P<0.05). In addition, the mRNA expression levels of PGC-1α were greater in Rongchang pigs than in the Landrace (P<0.05), which can partly explain the differences in MyHC isoform gene expressions between Rongchang and Landrace pigs. Although the small number of samples does not allow to obtain a definitive conclusion, we can suggest that Rongchang pigs possess better meat quality, and the underlying molecular mechanisms responsible for the better meat quality in fatty pigs may be partly due to the higher mRNA expression levels of lipogenesis and fatty acid uptake-related genes, as well as the oxidative and intermediate muscle fibers, and due to the lower mRNA expression levels of lipolysis and fatty acid oxidation-related genes, as well as the glycolytic muscle fibers.  相似文献   

16.
Hans Kleinig  Bodo Liedvogel 《Planta》1980,150(2):166-169
1. Fatty acid synthesis in isolated intact chromoplasts from [1-14C]acetate was made possible by using ATP, ADP (via adenylate kinase), and, with decreasing efficiency, UTP, CTP, and GTP as energy sources. 2. The glycolytic path from dihydroxyacetone phosphate to acetyl-CoA operates within the chromoplasts. The glycolytic intermediates, especially 2-phosphoglycerate and phosphoenolpyruvate, served as very effective energy donors for fatty acid synthesis by phosphorylating the endogenous adenine nucleotide pool. 3. In the presence of exogenous ATP or ADP, appreciable amounts of in vitro formed fatty acids were found as acyl-CoA and subsequent products, mainly phosphatidylcholine. When other energy sources were used most of the acids formed were in the free form, and to a minor extent, in the phosphatidic acid and diacylglycerol fractions. Similar results have recently been reported for spinach chloroplasts (Kleinig and Liedvogel 1979, FEBS Lett.101, 339–342).Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - UTP uridine triphosphate - CTP cytidine triphosphate - GTP gnanosine triphosphate  相似文献   

17.
Epigallocatechin gallate (EGCG), a major component of tea, has known effects on obesity, fatty liver, and obesity‐related cancer. We explored the effects of EGCG on the differentiation of bovine mesenchymal stem cells (BMSCs, which are multipotent) in a dose‐ and time‐dependent manner. Differentiating BMSCs were exposed to various concentrations of EGCG (0, 10, 50, 100, and 200 µM) for 2, 4, and 6 days. BMSCs were cultured in Dulbecco's modified Eagle's medium (DMEM)/high‐glucose medium with adipogenic inducers for 6 days, and the expression levels of various genes involved in adipogenesis were measured using real‐time polymerase chain reaction (PCR) and Western blotting. We assessed apoptosis by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick‐end labeling (TUNEL) staining of control and EGCG‐exposed cells. We found that EGCG significantly suppressed fat deposition and cell viability (P < 0.05). The mRNA and protein levels of various adipogenic factors were measured. Expression of the genes encoding peroxisome proliferator‐activated receptor gamma (PPARG), CCAAT/enhancer‐binding protein alpha (CEBPA), fatty acid‐binding protein 4 (FABP4), and stearoyl‐CoA desaturase (SCD) were diminished by EGCG during adipogenic differentiation (P < 0.05). We also found that EGCG lowered the expression levels of the adipogenic proteins encoded by these genes (P < 0.05). EGCG induced apoptosis during adipogenic differentiation (P < 0.05). Thus, exposure to EGCG potentially inhibits adipogenesis by triggering apoptosis; the data suggest that EGCG inhibits adipogenic differentiation in BMSCs.  相似文献   

18.
A derivative strain of Escherichia coli MG1655 for d-lactate production was constructed by deleting the pflB, adhE and frdA genes; this strain was designated “CL3.” Results show that the CL3 strain grew 44% slower than its parental strain under nonaerated (fermentative) conditions due to the inactivation of the main acetyl-CoA production pathway. In contrast to E. coli B and W3110 pflB derivatives, we found that the MG1655 pflB derivative is able to grow in mineral media with glucose as the sole carbon source under fermentative conditions. The glycolytic flux was 2.8-fold higher in CL3 when compared to the wild-type strain, and lactate yield on glucose was 95%. Although a low cell mass formed under fermentative conditions with this strain (1.2 g/L), the volumetric productivity of CL3 was 1.31 g/L h. In comparison with the parental strain, CL3 has a 22% lower ATP/ADP ratio. In contrast to wild-type E. coli, the ATP yield from glucose to lactate is 2 ATP/glucose, so CL3 has to improve its glycolytic flux in order to fulfill its ATP needs in order to grow. The aceF deletion in strains MG1655 and CL3 indicates that the pyruvate dehydrogenase (PDH) complex is functional under glucose-fermentative conditions. These results suggest that the pyruvate to acetyl-CoA flux in CL3 is dependent on PDH activity and that the decrease in the ATP/ADP ratio causes an increase in the flux of glucose to lactate.  相似文献   

19.
The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine subcutaneous fat thickness (SFT) and intramuscular fat (IMF) content. Obese and lean-type pig breeds show obvious differences in adipose deposition; however, the molecular mechanism underlying this phenotypic variation remains unclear. We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages (1–5 months) of Landrace (a leaner, Western breed) and Taihu pigs (a fatty, indigenous, Chinese breed). Variance analysis (ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant (FDR adjusted permutation, P<0.05) among 5 growth stages. Gene class test (GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages (P ErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associated with lipid and steroid metabolism. These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes. Clustering analysis revealed a very high level of significance (FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance (FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs. Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs. Based on a dynamic Bayesian network (DBN) model, gene regulatory networks (GRNs) were reconstructed from time-series data for each pig breed. These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds; from these results, some potential key genes could be identified. Quantitative, real-time RT-PCR (QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages (R=0.874±0.071). These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.  相似文献   

20.
Storage of lipid in ectopic depots outside of abdominal visceral and subcutaneous stores, including within the pericardium and liver, has been associated with obesity, insulin resistance, and cardiovascular risk. We sought to determine whether anatomically distinct ectopic depots were physiologically correlated and site‐specific effects upon cardiovascular function could be identified. Obese subjects (n = 28) with metabolic syndrome but without known atherosclerotic disease and healthy controls (n = 18) underwent magnetic resonance imaging (MRI) and proton MR spectroscopy (MRS) to quantify pericardial and periaortic lipid volumes, cardiac function, aortic compliance, and intrahepatic lipid content. Fasting plasma lipoproteins, glucose, insulin, and free‐fatty acids were measured. Pericardial and intrahepatic (P < 0.01) and periaortic (P < 0.05) lipid volumes were increased in obese subjects vs. controls and were strongly and positively correlated (P ≤ 0.01) but independent of BMI (P = NS) among obese subjects. Intrahepatic lipid was associated with insulin resistance (P < 0.01) and triglycerides (P < 0.05), whereas pericardial and periaortic lipid were not (P = NS). Periaortic and pericardial lipid positively correlated to free‐fatty acids (P ≤ 0.01) and negatively correlated to high‐density lipoprotein (HDL) cholesterol (P < 0.05). Pericardial lipid negatively correlated to cardiac output (P = 0.03) and stroke volume (P = 0.01) but not to left ventricular ejection fraction (P = 0.46). None of the ectopic depots correlated to aortic compliance. In conclusion, ectopic storage of lipid in anatomically distinct depots appeared tightly correlated but independent of body size. Site‐specific functional abnormalities were observed for pericardial but not periaortic lipid. These findings underscore the utility of MRI to assess individual differences in ectopic lipid that are not predictable from BMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号