首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.  相似文献   

2.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Currently, an increasing evidence showed that circular RNAs (circRNAs) play important roles in tumor progression. However, the effects and underlying mechanisms of circRNAs in CRC progression remain unclear. In the present study, through circRNA high-throughput sequencing and quantitative real-time polymerase chain reaction, we identified that hsa_circ_0136666 was significantly overexpressed in CRC tissues and cell lines. High hsa_circ_0136666 expression was associated with poor overall survival of patients with CRC. In vitro function assays showed that hsa_circ_0136666 inhibition suppressed CRC cell proliferation, migration, invasion, and arrested CRC cells in the G0/G1 phase. Furthermore, we showed that hsa_circ_0136666 inhibition reduced CRC cell growth in vivo. Mechanistically, we revealed that hsa_circ_0136666 could increase SH2B1 expression via competitively binding miR-136 in CRC cells. In addition, SH2B1 overexpression could reverse the effects of hsa_circ_0136666 inhibition on CRC cell progression. In conclusion, our data suggested that hsa_circ_0136666 could promote CRC cell progression via the miR-136/SH2B1 axis, elucidating a novel approach to improve the effectiveness of CRC treatment.  相似文献   

3.
Circular RNAs (circRNAs) have been demonstrated to be important regulators in human malignant tumors, including colorectal cancer (CRC). While the role circ-ZEB1 played in CRC remains unclear. In this study, we aim to explore the biological function and the underlying mechanism of circ-ZEB1 in CRC. RNAscope was used to analyze the expression and localization of circ-ZEB1 in CRC tissues. Loss of function experiments were conducted, including CCK-8, transwell assays, flow cytometry analysis, and murine xenograft models, so as to detect the effect of circ-ZEB1 on CRC cells. IC50 assay was used to evaluate the influence of circ-ZEB1 on the chemoresistance of CRC cells. Epithelial-mesenchymal transition (EMT) related markers were detected. The relationship between circ-ZEB1 and miR-200c-5p was investigated by FISH, dual-luciferase reporter assay, and RIP assay. We found in our study that circ-ZEB1 was significantly upregulated in CRC tissues. Downregulation of circ-ZEB1 inhibited cell proliferation, colony formation, as well as cell migration and invasion abilities of CRC cell lines. In vivo experiments indicated that knockdown of circ-ZEB1 suppressed tumorigenesis and distant metastasis of CRC cells in nude mice. What's more, EMT and chemoresistance of CRC cells were also attenuated following circ-ZEB1 knockdown. Mechanistically, we proved that circ-ZEB1 could directly bind with miR-200c and functioned as miR-200c sponge to exert its biological functions in CRC cells. In conclusion, circ-ZEB1 could promote CRC cells progression, EMT, and chemoresistance via acting on miR-200c, elucidating a potential therapeutic target to inhibit CRC progression.  相似文献   

4.
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease. Synoviocyte migration and invasion were found to be essential to the pathology of RA. Upregulation of long noncoding RNA ZFAS1 has been observed in cancers and promotes cell migration and invasion. To date, the functions and mechanisms of ZFAS1 in RA have not been revealed. In this study, we analyzed expression pattern of ZFAS1 in RA patients and found that ZFAS1 expression was increased in synovial tissue and fibroblast-like synoviocytes (FLS) from RA patients (RA-FLS) compared with that in healthy donors. Functional assays showed that silence of ZFAS1 suppressed RA-FLS migration and invasion, while overexpression of ZFAS1 showed the opposite effect. Further investigation demonstrated that ZFAS1 directly interacted with miR-27a and decreased miR-27a expression. ZFAS1 promotes RA-FLS migration and invasion in an miR-27a-dependent manner. Taken together, the present study provides the first evidence that ZFAS1 promotes cell migration and invasion through miR-27a in RA-FLS, suggesting that ZFAS1 may be an effective therapeutic target for RA patients.  相似文献   

5.
Gastric cancer is a common malignant tumor. Studies from our laboratory or others have shown that long non-coding RNA (lncRNA) zinc finger antisense (ZFAS)1 often acts as an oncogene. However, the molecular underpinnings of how ZFAS1 regulates gastric cancer remain to be elucidated. Results showed that ZFAS1 expression was upregulated, and microRNA-200b-3p (miR-200b) expression was downregulated in gastric cancer tissues. MiR-200b overexpression suppressed the proliferation, cell cycle process, and Wnt/β-catenin signaling of gastric cancer cells. Subsequently, we identified miR-200b is a target of ZFAS1 and Wnt1 is a target of miR-200b. Furthermore, promotion of cancer malignant progression and activation of Wnt/β-catenin signaling induced by ZFAS1 was counteracted by increasing miR-200b expression. In vivo, ZFAS1 knockdown suppressed the tumorigenesis with the upregulated miR-200b and the inactive Wnt/β-catenin signaling. Summarily, we demonstrated a critical role of miR-200b in gastric cancer, and ZFAS1 can promote malignant progression through regulating miR-200b mediated Wnt/β-catenin signaling.  相似文献   

6.
Non–small cell lung cancer (NSCLC) is the main type of lung malignancy. Early diagnosis and treatments for NSCLC are far from satisfactory due to the limited knowledge of the molecular mechanisms regarding NSCLC progression. Long noncoding RNA (lncRNA) ZNFX1 antisense RNA1 (ZFAS1) has been implicated for its functional role in the progression of malignant tumors. This study aimed to determine the ZFAS1 expression from lung cancer clinical samples and to explore the molecular mechanisms underlying ZFAS1-modulated NSCLC progression. Experimental assays revealed that clinical samples and cell lines of lung malignant tumors showed an upregulation of ZFSA1. ZFAS1 expression was markedly upregulated in the lung tissues from patients with advanced stage of this malignancy. The loss-of-function assays showed that knockdown of ZFAS1-suppressed NSCLC cell proliferative, as well as invasive potentials, increased NSCLC cell apoptotic rates in vitro and also attenuated tumor growth of NSCLC cells in the nude mice. Further experimental evidence showed that ZFAS1 inversely affected miR-150-5p expression and positively affected high-mobility group AT-hook 2 (HMGA2) expression in NSCLC cell lines. MiR-150-5p inhibition or HMGA2 overexpression counteracted the effects of ZFAS1 knockdown on NSCLC cell proliferative, invasive potentials and apoptotic rates. In light of examining the clinical lung cancer samples, miR-150-5p expression was downregulated and the HMGA2 expression was highly expressed in the lung cancer tissues compared with normal ones; the ZFAS1 expression showed a negative correlation with miR-150-5p expression but a positive correlation with HMGA2 expression in lung cancer tissues. To summarize, we, for the first time, demonstrated the inhibitory effects of ZFAS1 knockdown on NSCLC cell progression, and the results from mechanistic studies indicated that ZFAS1-mediated NSCLC progression cells via targeting miR-150-5p/HMGA2 signaling.  相似文献   

7.
Long non-coding RNA ZFAS1 is down-regulated in sepsis. However, whether ZFAS1 participates in sepsis-induced cardiomyopathy (SIC) remains largely unknown. LPS injection to rats was used to establish an in vivo sepsis model, while LPS stimulation with H9C2 cell was used to mimic an in vitro sepsis-induced myocardial injury model. Western blots and quantitative RT-PCR were performed to evaluate protein and mRNA levels, respectively. ELISA was conducted to determine cytokine levels in supernatant. Flow cytometry was used to test apoptosis. Dual-luciferase assay was performed to validate binding between ZFAS1 and miR-34b-5p, miR-34b-5p and SIRT1. Our data revealed that ZFAS1 and SIRT1 were down-regulated, while miR-34b-5p was up-regulated in LPS-induced H9C2 cells. Inhibition of miR-34b-5p or overexpression of ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells. A mechanism study revealed that ZFAS1 sponged miR-34b-5p and thus elevated expression of SIRT1, which was prohibited by miR-34b-5p. ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells via the miR-34b-5p/SIRT1 axis, providing novel potential therapeutic targets for SIC.  相似文献   

8.
The lncRNA ZFAS1 plays a carcinogenic regulatory role in many human tumours, but it is rarely reported in pancreatic cancer. We identify the role and molecular mechanisms of ZFAS1 in pancreatic cancer. The expression of ZFAS1, miR-497-5p and HMGA2 in pancreatic cancer tissues was detected by qRT-PCR. Pancreatic cancer data in The Cancer Genome Atlas were also included in this study. CCK8, EdU, transwell and scratch wound assays were used to investigate the biological effects of ZFAS1 in pancreatic cancer cells. MS2-RIP, RNA pull-down, RNA-ChIP and luciferase reporter assays were used to clarify the molecular biological mechanisms of ZFAS1 in pancreatic cancer. The role of ZFAS1 in vivo was also confirmed via xenograft experiments. ZFAS1 was overexpressed in pancreatic cancer tissues. ZFAS1 promoted the growth and metastasis of pancreatic cancer cells, and miR-497-5p acted as a tumour suppressor gene in pancreatic cancer by targeting HMGA2. We also demonstrated that ZFAS1 exerts its effects by promoting HMGA2 expression through decoying miR-497-5p. We also found that ZFAS1 promoted the progression of pancreatic cancer in vivo by modulating the miR-497-5p/HMGA2 axis. In conclusion, this study revealed a new role for and the molecular mechanisms of ZFAS1 in pancreatic cancer, identifying ZFAS1 as a novel target for the diagnosis and treatment of pancreatic cancer.Subject terms: Oncogenes, Cell invasion, Long non-coding RNAs  相似文献   

9.
10.
BackgroundRBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC.MethodsThe expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity.ResultsOur results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice.ConclusionRBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.  相似文献   

11.
microRNAs (miRNAs) are noncoding RNAs that regulates the expression of target messenger RNAs (mRNAs). c-FLIP is an inhibitor of cell apoptosis through inhibition of caspase 8. miR-150, miR-504, and miR-519d were related to cancer cell proliferation, invasion, and migration in colorectal cancer (CRC). However, the role of miR-150-504-519d in CRC has not been studied and the relationship between miR-150-504-519d and c-FLIP remains unclear. In this study, we found that c-FLIP was upregulated in CRC tissues, without detectable expression in normal CRC tissues. Using SW48 cell line, we further showed that miR-150-504-519d inhibited migration, invasion, and promoted apoptosis of SW48 cells. Moreover, in SW48 cell line transfected with miR-150-504-519d, the protein expression of c-FLIP was significantly lower compared with cells transfected with scramble. Our results demonstrated upregulation of c-FLIP in CRC, which was downregulated in SW48 cells after the transfection of miR-150-504-519d, suggesting that manipulation of miR-150-504-519d expression might be a novel approach for the treatment of colorectal cancer.  相似文献   

12.
《Genomics》2020,112(5):3597-3608
ObjectiveThe objective was to find the role of long-non-coding RNA zinc finger antisense 1 (lncRNA ZFAS1)/microRNA (miR)-129/high-mobility group box protein 1 (HMGB1) axis in polycystic ovary syndrome (PCOS).MethodsOvarian granulosa cells from non-PCOS patients and PCOS patients were collected, and HMGB1, miR-129 and lncRNA ZFAS1 expression were detected. Ovarian granulosa cells were transfected with si-ZFAS1 or miR-129 mimics to verify their roles in P4 and E2 secretion, and the biological functions of ovarian granulosa cells.ResultsLncRNA ZFAS1 and HMGB1 were elevated, while miR-129 was down-regulated in ovarian granulosa cells of PCOS patients. Down-regulated lncRNA ZFAS1 or overexpressed miR-129 could decrease HMGB1 expression, increase P4 and E2 secretion, promote proliferation activity while inhibit apoptosis of ovarian granulosa cells in PCOS.ConclusionLncRNA ZFAS1 could bind to miR-129 to promote HMGB1 expression, thereby affecting the endocrine disturbance, proliferation and apoptosis of ovarian granulosa cells in PCOS.  相似文献   

13.
Diabetic cardiomyopathy (DbCM) is responsible for increased morbidity and mortality in patients with diabetes and heart failure. However, the pathogenesis of DbCM has not yet been identified. Here, we investigated the important role of lncRNA-ZFAS1 in the pathological process of DbCM, which is associated with ferroptosis. Microarray data analysis of DbCM in patients or mouse models from GEO revealed the significance of ZFAS1 and the significant downregulation of miR-150-5p and CCND2. Briefly, DbCM was established in high glucose (HG)–treated cardiomyocytes and db/db mice to form in vitro and in vivo models. Ad-ZFAS1, Ad-sh-ZFAS1, mimic miR-150-5p, Ad-CCND2 and Ad-sh-CCND2 were intracoronarily administered to the mouse model or transfected into HG-treated cardiomyocytes to determine whether ZFAS1 regulates miR-150-5p and CCND2 in ferroptosis. The effect of ZFAS1 on the left ventricular myocardial tissues of db/db mice and HG-treated cardiomyocytes, ferroptosis and apoptosis was determined by Masson staining, immunohistochemical staining, Western blotting, monobromobimane staining, immunofluorescence staining and JC-1 staining. The relationships among ZFAS1, miR-150-5p and CCND2 were evaluated using dual-luciferase reporter assays and RNA pull-down assays. Inhibition of ZFAS1 led to reduced collagen deposition, decreased cardiomyocyte apoptosis and ferroptosis, and attenuated DbCM progression. ZFAS1 sponges miR-150-5p to downregulate CCND2 expression. Ad-sh-ZFAS1, miR-150-5p mimic, and Ad-CCND2 transfection attenuated ferroptosis and DbCM development both in vitro and in vivo. However, transfection with Ad-ZFAS1 could reverse the positive effects of miR-150-5p mimic and Ad-CCND2 in vitro and in vivo. lncRNA-ZFAS1 acted as a ceRNA to sponge miR-150-5p and downregulate CCND2 to promote cardiomyocyte ferroptosis and DbCM development. Thus, ZFAS1 inhibition could be a promising therapeutic target for the treatment and prevention of DbCM.  相似文献   

14.
15.
Insulin receptor substrate 1 (IRS1) is a potential oncogene that has been implicated in several malignant tumors. However, the regulatory mechanism of IRS1 remains to be investigated. The aim of our current study is to unveil the mechanism by which IRS1 exerts functions in tumorigenesis of colorectal cancer (CRC). The expression level of IRS1 was found to be higher in CRC cells in comparison with the normal cell. To determine the role of IRS1 in regulating CRC cellular processes, loss-of-function assays were designed and carried out in two CRC cell lines. Both in vitro and in vivo functional assays indicated that silencing of IRS1 suppressed CRC cell survival. Based on bioinformatics prediction and mechanism experiments, IRS1 was identified as a downstream target of miR-30a-5p. Furthermore, RNA-binding protein lin-28 homolog B (LIN28B) was determined to be a stabilizer of IRS1 messenger RNA. More importantly, LIN28B also acted as a target of miR-30a-5p.Through rescue assays, we proved that LIN28B-stablized IRS1 mediated miR-30a-5p-mediated CRC cell growth. In conclusion, this study revealed that LIN28B and LIN28B-stablized IRS1 promoted CRC cell growth by cooperating with miR-30a-5p.  相似文献   

16.
Zinc finger protein 217 (ZNF217) is essential for cell proliferation and has been implicated in tumorigenesis. However, its expression and exact roles in colorectal cancer (CRC) remain unclear. In this study, we demonstrated that ZNF217 expression was aberrantly upregulated in CRC tissues and associated with poor overall survival of CRC patients. In addition, we found that ZNF217 was a putative target of microRNA (miR)-203 using bioinformatics analysis and confirmed that using luciferase reporter assay. Moreover, in vitro knockdown of ZNF217 or enforced expression of miR-203 attenuated CRC cell proliferation, invasion and migration. Furthermore, combined treatment of ZNF217 siRNA and miR-203 exhibited synergistic inhibitory effects. Taken together, our results provide new evidences that ZNF217 has an oncogenic role in CRC and is regulated by miR-203, and open up the possibility of ZNF217- and miR-203-targeted therapy for CRC.  相似文献   

17.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

18.
miR-138-5p has been identified as a novel cancer-related miRNA molecule in a variety of malignancies. However, the functions and mechanisms underlying miR-138-5p in colorectal carcinoma (CRC) remains largely unknown. In the present study, we analysed the biological effects and clinical significance of miR-138-5p in CRC. miR-138-5p expression was analysed by quantitative real-time PCR in CRC tissues and cell lines. The effects of miR-138-5p on CRC cell growth was detected by cell proliferation, colony formation, cell cycle and cell apoptosis assays in vitro and in vivo. Our data showed that miR-138-5p was significantly downregulated in CRC. Downregulated miR-138-5p was related with poor prognosis in patients with CRC. miR-138-5p suppressed CRC growth but promoted cell death both in vitro and in vivo. Online predictions and integrated experiments identified that miR-138-5p targeted MCU, and downregulated miR-138-5p promoted mitochondrial biogenesis in CRC. In the light of the underlying mechanisms, our results indicated that downregulated miR-138-5p led to increased expression of MCU, which subsequently increased the production of ROS to promote CRC growth. Our results indicated that downregulated miR-138-5p strengthened mitochondrial biogenesis through targeting MCU, thus contributing to CRC cell growth, which may provide a potential therapeutic target for CRC.  相似文献   

19.
20.
Colorectal cancer has become the third most common cancer and leads to high mortality worldwide. Although colorectal cancer has been studied widely, the underlying molecular mechanism remains unclear. PER3 is related to tumor differentiation and the progression of colorectal cancer. High expression of miR-103 is associated with poor prognosis in patients with colorectal cancer. However, the relationship between miR-103 and PER3 in CRC cells remains unclear. In this study, we found that PER3 was downregulated in CRC tissues and CRC cell lines, whereas miR-103 was upregulated in CRC cell lines. We also found that PER3 promoted CRC cells apoptosis. These results indicate that PER3 plays a suppressive role in CRC cells. Moreover, we found that PER3 was targeted, at least partially, by miR-103. Taken together, we provide evidence to characterize the role of PER3 in CRC, which may be a new therapeutic target for CRC. [BMB Reports 2014;47(9): 500-505]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号