首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A short G1 phase is a characteristic feature of mouse embryonic stem cells (ESCs). To determine if there is a causal relationship between G1 phase restriction and pluripotency, we made use of the Fluorescence Ubiquitination Cell Cycle Indicator (FUCCI) reporter system to FACS-sort ESCs in the different cell cycle phases. Hence, the G1 phase cells appeared to be more susceptible to differentiation, particularly when ESCs self-renewed in the naïve state of pluripotency. Transitions from ground to naïve, then from naïve to primed states of pluripotency were associated with increased durations of the G1 phase, and cyclin E-mediated alteration of the G1/S transition altered the balance between self-renewal and differentiation. LIF withdrawal resulted in a lengthening of the G1 phase in naïve ESCs, which occurred prior to the appearance of early lineage-specific markers, and could be reversed upon LIF supplementation. We concluded that the short G1 phase observed in murine ESCs was a determinant of naïve pluripotency and was partially under the control of LIF signaling.  相似文献   

2.
Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3β and MEK (so‐called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA‐binding protein known to play a key role in germ‐cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5‐hydroxylation of methyl‐cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i‐mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1‐mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state.  相似文献   

3.
Naïve and primed pluripotent stem cells recapitulate the peri- and post-implantation development, respectively. Thus, investigation of distinct traits between each pluripotent stem cell type would shed light on early embryonic processes. Herein, by screening a fluorescent probe library, we found that intracellular glycogen led to specific reactivity to CDg4, a glycogen fluorescence sensor, in both human and mouse naïve embryonic stem cells (ESCs). The requirement of constant inhibition of Gsk3β as well as high oxidative phosphorylation (OxPHOS) in naïve compared to primed ESCs was closely associated to high level of intracellular glycogen in naïve ESCs. Both capacity of OxPHOS and stored glycogen, rescued naïve ESCs by transient inhibition of glycolysis, which selectively eliminated primed ESCs. Additionally, naïve ESCs with active OxPHOS were enriched from a mixture with primed ESCs by high reactivity to ATP-Red1, a mitochondrial ATP fluorescence probe. These results indicate the active OxPHOS and high intracellular glycogen as a novel “biomarker” delineating metabolic remodeling during the transition of naïve pluripotency.  相似文献   

4.
5.
6.
7.
Cell surface glycans are tissue-specific and developmentally regulated. They function as essential modulators in cell-cell interactions, cell-extracellular matrix interactions, and ligand-receptor interactions, binding to various ligands, including Wnt, fibroblast growth factors, and bone morphogenetic proteins. Embryonic stem (ES) cells, originally derived from the inner cell mass of blastocysts, have the essential characteristics of pluripotency and self-renewal. Recently, it has been proposed that mouse and human conventional ES cells are present in different developmental stages, namely pre-implantation blastocyst and post-implantation blastocyst stages, also called the naïve state and the primed state, respectively. They therefore require different extrinsic signals for the maintenance of self-renewal and pluripotency, and also appear to require different surface glycans. Understanding of molecular mechanisms involving glycans in self-renewal and pluripotency of ES cells is increasingly important for potential clinical applications, as well as for basic research. This review focuses on the roles of glycans in the two different states of pluripotent stem cells, namely the naïve state and the primed state, and the transition between these two states.  相似文献   

8.
9.
The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope). Knockdown of 3OST-5 reduced Fas signaling and the potential for the transition to mEpiSCLCs. This indicates that the HS4C3-binding epitope is necessary for the transition to the primed state. We propose that Fas signaling through the HS4C3-binding epitope contributes to the transition from the naïve state to the primed state.  相似文献   

10.
Mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK‐responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK‐depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.  相似文献   

11.
12.
13.
The clinical and research value of human embryonic stem cells (hESC) depends upon maintaining their epigenetically naïve, fully undifferentiated state. Inactivation of one X chromosome in each cell of mammalian female embryos is a paradigm for one of the earliest steps in cell specialization through formation of facultative heterochromatin. Mouse ES cells are derived from the inner cell mass (ICM) of blastocyst stage embryos prior to X‐inactivation, and cultured murine ES cells initiate this process only upon differentiation. Less is known about human X‐inactivation during early development. To identify a human ES cell model for X‐inactivation and study differences in the epigenetic state of hESC lines, we investigated X‐inactivation in all growth competent, karyotypically normal, NIH approved, female hESC lines and several sublines. In the vast majority of undifferentiated cultures of nine lines examined, essentially all cells exhibit hallmarks of X‐inactivation. However, subcultures of any hESC line can vary in X‐inactivation status, comprising distinct sublines. Importantly, we identified rare sublines that have not yet inactivated Xi and retain competence to undergo X‐inactivation upon differentiation. Other sublines exhibit defects in counting or maintenance of XIST expression on Xi. The few hESC sublines identified that have not yet inactivated Xi may reflect the earlier epigenetic state of the human ICM and represent the most promising source of NIH hESC for study of human X‐inactivation. The many epigenetic anomalies seen indicate that maintenance of fully unspecialized cells, which have not formed Xi facultative heterochromatin, is a delicate epigenetic balance difficult to maintain in culture. J. Cell. Physiol. 216: 445–452, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
Human embryonic stem cells (hESCs) undergo self-renewal while maintaining pluripotency. However, the molecular mechanism that demonstrates how these cells maintain their undifferentiated state and how they selfrenew is poorly understood. Here, we characterized an aneuploidy H1 hESC subline (named H1T) using karyotyping and comparative genomic hybridization (CGH) microarray. Because the H1T hESC line displays a self-renewal advantage while maintaining an undifferentiated state, we speculated that the expression patterns of specific genes which are related to pluripotency or differentiation were altered; therefore, we attempted to screen for molecules that are propitious for maintenance of stemness by performing a combination of mRNA and CGH microarray analysis which compared the aneuploidy H1T hESC subline versus the euploid H1 hESC line. It is discovered that some genes are up-regulated in H1T hESC subline such as TBX2 and Wnt3, while some are downregulated, for example, Fbxo7 and HMG2L1. Our findings should fascilitate the study of the complex signaling network which maintains hESC pluripotency and function.  相似文献   

17.
Prior to differentiation, embryonic stem (ES) cells in culture are maintained in a so-called “undifferentiated” state, allowing derivation of multiple downstream cell lineages when induced in a directed manner, which in turn grants these cells their “pluripotent” state. The current work is based on a simple observation that the initial culture condition for maintaining mouse ES cells in an “undifferentiated” state does impact on the differentiation propensity of these cells, in this case to a neuronal fate. We point out the importance in judging the “pluripotency” of a given stem cell culture, as this clearly demonstrated that the “undifferentiated” state of these cells is not necessarily a “pluripotent” state, even for a widely used mouse ES cell line. We partly attribute this difference in the initial value of ES cells to the naïve-to-primed status of pluripotency, which in turn may affect early events of the differentiation in vitro.  相似文献   

18.
19.
20.
Previously we reported that feeders formed from human placental fibroblasts (hPFs) support derivation and long-term self-renewal of human embryonic stem cells (hESCs) under serum-free conditions. Here, we show, using antibody array and ELISA platforms, that hPFs secrete ~6-fold higher amounts of the CXC-type chemokine, GROα, than IMR 90, a human lung fibroblast line, which does not support hESC growth. Furthermore, immunocytochemistry and immunoblot approaches revealed that hESCs express CXCR, a GROα receptor. We used this information to develop defined culture medium for feeder-free propagation of hESCs in an undifferentiated state. Cells passaged as small aggregates and maintained in the GROα-containing medium had a normal karyotype, expressed pluripotency markers, and exhibited apical-basal polarity, i.e., had the defining features of pluripotent hESCs. They also differentiated into the three primary (embryonic) germ layers and formed teratomas in immunocompromised mice. hESCs cultured as single cells in the GROα-containing medium also had a normal karyotype, but they downregulated markers of pluripotency, lost apical-basal polarity, and expressed markers that are indicative of the early stages of neuronal differentiation-βIII tubulin, vimentin, radial glial protein, and nestin. These data support our hypothesis that establishing and maintaining cell polarity is essential for the long-term propagation of hESCs in an undifferentiated state and that disruption of cell-cell contacts can trigger adoption of a neuronal fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号