首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone ubiquitination regulates the chromatin structure that is important for many biological processes. Recently, ubiquitination of histones was observed during the DNA damage response (DDR), and this modification is controlled by really interesting new gene (RING) domain E3 ligase, RNF8. Together with the E2 conjugating enzyme UBC13, RNF8 catalyzes ubiquitination of the histones H2A and H2AX during the DDR, thus facilitating downstream recruitment of DDR factors, such as p53 binding protein 1 (53BP1) and breast cancer type 1 susceptibility protein (BRCA1), to the damage site. Accordingly, the RNF8 knockout mice display phenotypes associated with failed DDR, including hypersensitivity to ionizing radiation, V(D)J recombination deficiency, and a predisposition to cancer. In addition to the DDR phenotypes, RNF8 knockout mice fail to generate mature sperm during spermatogenesis, resulting in male sterility. The RNF8 knockout mice also have a drastic reduction in histone ubiquitination in the testes. These findings indicate that the role of histone ubiquitination during chromatin remodeling in two different biological events could be linked by an RNF8-dependent mechanism. Here, we review the molecular mechanism of RNF8-dependent histone ubiquitination both in DDR and spermatogenesis.  相似文献   

2.
3.
Histone Ubiquitination Associates with BRCA1-Dependent DNA Damage Response   总被引:1,自引:0,他引:1  
Histone ubiquitination participates in multiple cellular processes, including the DNA damage response. However, the molecular mechanisms involved are not clear. Here, we have identified that RAP80/UIMC1 (ubiquitin interaction motif containing 1), a functional partner of BRCA1, recognizes ubiquitinated histones H2A and H2B. The interaction between RAP80 and ubiquitinated histones H2A and H2B is increased following DNA damage. Since RAP80 facilitates BRCA1's translocation to DNA damage sites, our results indicate that ubiquitinated histones H2A and H2B could be upstream partners of the BRCA1/RAP80 complex in the DNA damage response. Moreover, we have found that RNF8 (ring finger protein 8), an E3 ubiquitin ligase, regulates ubiquitination of both histones H2A and H2B. In RNF8-deficient mouse embryo fibroblasts, ubiquitination of both histones H2A and H2B is dramatically reduced, which abolishes the DNA damage-induced BRCA1 and RAP80 accumulation at damage lesions on the chromatin. Taken together, our results suggest that ubiquitinated histones H2A and H2B may recruit the BRCA1 complex to DNA damage lesions on the chromatin.  相似文献   

4.
5.
6.
The mammalian E3 ubiquitin ligases RNF8 and RNF168 facilitate recruitment of the DNA damage response protein 53BP1 to sites of DNA double-strand breaks (DSBs). The mechanism involves recruitment of RNF8, followed by recruitment of RNF168, which ubiquitinates histones H2A/H2AX on K15. 53BP1 then binds to nucleosomes at sites of DNA DSBs by recognizing, in addition to methyl marks, histone H2A/H2AX ubiquitinated on K15. We report here that expressing H2AX fusion proteins with N-terminal bulky moieties can rescue 53BP1 recruitment to sites of DNA DSBs in cells lacking RNF8 or RNF168 or in cells treated with proteasome inhibitors, in which histone ubiquitination at sites of DNA DSBs is compromised. The rescue required S139 at the C-terminus of the H2AX fusion protein and was occasionally accompanied by partial rescue of ubiquitination at sites of DNA DSBs. We conclude that recruitment of 53BP1 to sites of DNA DSBs is possible in the absence of RNF8 or RNF168, but still dependent on chromatin ubiquitination.  相似文献   

7.
8.
In response to DNA damage, cells initiate complex signalling cascades leading to growth arrest and DNA repair. The recruitment of 53BP1 to damaged sites requires the activation of the ubiquitination cascade controlled by the E3 ubiquitin ligases RNF8 and RNF168, and methylation of histone H4 on lysine 20. However, molecular events that regulate the accessibility of methylated histones, to allow the recruitment of 53BP1 to DNA breaks, are unclear. Here, we show that like 53BP1, the JMJD2A (also known as KDM4A) tandem tudor domain binds dimethylated histone H4K20; however, JMJD2A is degraded by the proteasome following the DNA damage in an RNF8-dependent manner. We demonstrate that JMJD2A is ubiquitinated by RNF8 and RNF168. Moreover, ectopic expression of JMJD2A abrogates 53BP1 recruitment to DNA damage sites, indicating a role in antagonizing 53BP1 for methylated histone marks. The combined knockdown of JMJD2A and JMJD2B significantly rescued the ability of RNF8- and RNF168-deficient cells to form 53BP1 foci. We propose that the RNF8-dependent degradation of JMJD2A regulates DNA repair by controlling the recruitment of 53BP1 at DNA damage sites.  相似文献   

9.
10.
Histone ubiquitination plays a vital role in DNA damage response (DDR), which is important for maintaining genomic integrity in eukaryotic cells. In DDR, ubiquitination of histone H2A and γH2AX by the concerted action of ubiquitin (Ub) ligases, RNF168 and RNF8, generates a cascade of ubiquitination signaling. However, little is known about deubiquitinating enzymes (DUBs) that may catalyze the removal of Ub from these histones. This study demonstrated that USP3, an apparent DUB for mono-ubiquitinated H2A, is indeed the enzyme for deubiquitinating Ub conjugates of γH2AX and H2A from lysine sites, where the ubiquitination is initiated by RNF168. Here, we showed that ectopic expression of USP3 led to the deubiquitination of both H2A and γH2AX in response to UV-induced DNA damage. Moreover, ectopic USP3 expression abrogated FK2 antibody-reactive Ub-conjugate foci, which co-localize with damage-induced γH2AX foci. In addition, USP3 overexpression impaired the accumulation of downstream repair factors BRCA1 and 53BP1 at the damage sites in response to both UV and γ-irradiation. We further identified that the USP3 removes Ub at lysine 13 and 15 of H2A and γH2AX, as well as lysine 118 and 119 of H2AX in response to DNA damage. Taken together, the results suggested that USP3 is a negative regulator of ubiquitination signaling, counteracting RNF168- and RNF8-mediated ubiquitination.  相似文献   

11.
12.
The process of meiosis reduces a diploid cell to four haploid gametes and is accompanied by extensive recombination. Thus, the dynamics of chromatin during meiosis are significantly different than in mitotic cells. As spermatogenesis progresses, there is a widespread reorganization of the haploid genome followed by extensive DNA compaction. It has become increasingly clear that the dynamic composition of chromatin plays a critical role in the activities of enzymes and processes that act upon it. Therefore, an analysis of the role of histone variants and modifications in these processes may shed light upon the mechanisms involved and the control of chromatin structure in general. Histone variants such as histone H3.3, H2AX, and macroH2A appear to play key roles in the various stages of spermiogenesis, in addition to the specifically modulated acetylation of histone H4 (acH4), ubiquitination of histones H2A and H2B (uH2A, uH2B), and phosphorylation of histone H3 (H3p). This review will examine recent discoveries concerning the role of histone modifications and variants during meiosis and spermatogenesis.  相似文献   

13.
During spermatogenesis, a large fraction of cellular proteins is degraded as the spermatids evolve to their elongated mature forms. In particular, histones must be degraded in early elongating spermatids to permit chromatin condensation. Our laboratory previously demonstrated the activation of ubiquitin conjugation during spermatogenesis. This activation is dependent on the ubiquitin-conjugating enzyme (E2) UBC4, and a testis-particular isoform, UBC4-testis, is induced when histones are degraded. Therefore, we tested whether there are UBC4-dependent ubiquitin protein ligases (E3s) that can ubiquitinate histones. Indeed, a novel enzyme, E3Histone, which could conjugate ubiquitin to histones H1, H2A, H2B, H3, and H4 in vitro, was found. Only the UBC4/UBC5 family of E2s supported E3Histone-dependent ubiquitination of histone H2A, and of this family, UBC4-1 and UBC4-testis are the preferred E2s. We purified this ligase activity 3,600-fold to near homogeneity. Mass spectrometry of the final material revealed the presence of a 482-kDa HECT domain-containing protein, which was previously named LASU1. Anti-LASU1 antibodies immunodepleted E3Histone activity. Mass spectrometry and size analysis by gel filtration and glycerol gradient centrifugation suggested that E3Histone is a monomer of LASU1. Our assays also show that this enzyme is the major UBC4-1-dependent histone-ubiquitinating E3. E3Histone is therefore a HECT domain E3 that likely plays an important role in the chromatin condensation that occurs during spermatid maturation.  相似文献   

14.
15.
Histones H2A and H2B are modified by ubiquitination of specific lysine residues in higher and lower eucaryotes. To identify functions of ubiquitinated histone H2A, we studied an organism in which genetic analysis of histones is feasible, the yeast Saccharomyces cerevisiae. Surprisingly, immunoblotting experiments using both anti-ubiquitin and anti-H2A antibodies gave no evidence that S. cerevisiae contains ubiquitinated histone H2A. The immunoblot detected a variety of other ubiquitinated species. A sequence of five residues in S. cerevisiae histone H2A that is identical to the site of H2A ubiquitination in higher eucaryotes was mutated to substitute arginines for lysines. Any ubiquitination at this site would be prevented by these mutations. Yeast organisms carrying this mutation were indistinguishable from the wild type under a variety of conditions. Thus, despite the existence in S. cerevisiae of several gene products, such as RAD6 and CDC34, which are capable of ubiquitinating histone H2A in vitro, ubiquitinated histone H2A is either scarce in or absent from S. cerevisiae. Furthermore, the histone H2A sequence which serves as a ubiquitination site in higher eucaryotes is not essential for yeast growth, sporulation, or resistance to either heat stress or UV radiation.  相似文献   

16.
17.
Dot1 is a non-SET domain protein that methylates histone H3 at lysine 79, a surface-exposed residue that lies within the globular domain. In the context of a nucleosome, H3 lysine 79 is located in close proximity with lysine 123 of histone H2B, a major site for ubiquitination by Rad6. Here we show that Rad6-mediated ubiquitination of H2B lysine 123 is important for efficient methylation of lysine 79, but not lysine 36, of histone H3. In contrast, lysine 79 methylation of H3 is not required for ubiquitination of H2B. Our study provides a new example of trans-histone regulation between modifications on different histones. In addition, it suggests that Rad6 affects telomeric silencing, at least in part, by influencing methylation of histone H3.  相似文献   

18.
Ubiquitinated derivatives of histones H2A and H2B, in which the carboxyl terminus of ubiquitin is joined to epsilon-amino groups of specific lysine residues of each histone, occur in vivo. Certain ubiquitin carrier proteins (E2s) catalyze ubiquitin transfer to histones (Pickart, C. M., and Rose, I. A. (1985) J. Biol. Chem. 260, 1573-1581). The catalytic activities of these purified ubiquitin carrier proteins have been quantitatively characterized with purified histones, in order to determine if one or more of them exhibits specificity for H2A over other histones (H3,H4) which are not known to be ubiquitinated in vivo. The results show the following. 1) No E2 exhibits strong specificity for H2A over the other histones. 2) For a given histone, kinetics of formation of its monoubiquitinated adduct do not differ strongly among the E2s; sigmoid kinetics (nH = 2) are generally observed, with values of K 0.5 ranging from 2-6 microM. 3) E214K catalyzes primarily monoubiquitination. 4) E220K catalyzes multiple ubiquitination (up to three ubiquitin/histone) by a processive mechanism that involves joining of ubiquitin carboxyl termini to multiple histone lysine residues. 5) E235K also catalyzes processive ubiquitination, with formation of polyubiquitinated products exhibiting a lag phase. Many of the polyubiquitinated adducts produced at low histone concentration are larger than expected for monoubiquitination of every histone-lysine residue, and polyubiquitination is selectively inhibited by substitution of reductively methylated ubiquitin for ubiquitin. These results suggest that E235K uniquely catalyzes ubiquitin transfer to lysine residues of previously conjugated ubiquitin molecule(s). The implications of these results for biological mechanisms of histone ubiquitination are discussed.  相似文献   

19.
表观遗传修饰参与了药物成瘾的形成过程,而在药物成瘾过程中组蛋白泛素化水平的变化仍未可知。药物成瘾过程中常表现为多巴胺(dopamine, DA)表达量的升高,因此本研究欲探讨多巴胺升高对神经细胞组蛋白泛素化的影响及其机制。Western印迹结果显示,在终浓度0.8 mmol/L的多巴胺作用8 h后,人神经母细胞瘤细胞系SH-SY5Y细胞中环指蛋白20(ring finger protein 20, RNF20)表达量降低(0.29±0.032 vs. 1.0±0.025,P<0.0001),泛素化组蛋白H2B(H2Bub1)表达量下降(0.28±0.032 vs. 1.0±0.017,P<0.0001)。但是RT-PCR结果显示,多巴胺处理SH-SY5Y细胞后,RNF20在mRNA水平的表达无明显变化。在SH-SY5Y细胞中沉默RNF20的表达,H2Bub1在蛋白质水平的表达明显降低(0.20±0.069 vs. 1.0±0.060,P=0.001)。在加入多巴胺的基础上,分别加入蛋白酶体抑制剂MG132、自噬体形成抑制剂3-MA以及空泡型H^+-ATP酶特异性抑制剂Baf-A1等药物来检测RNF20的降解途径,结果发现,加入MG132、3-MA以及Baf-A1后,RNF20表达量均比DA处理组显著上升(1.51±0.095,P=0.0003; 0.89±0.075,P=0.0021; 2.74±0.099,P<0.0001;vs. 0.27±0.044)。上述结果表明,在SH-SY5Y细胞中,RNF20对H2Bub1具有调控作用,多巴胺可通过泛素化及自噬两种途径促进RNF20降解,从而抑制组蛋白H2B泛素化。  相似文献   

20.
Modification of proteins by ubiquitination plays important roles in various cellular processes. During this process, the target specificity is determined by ubiquitin ligases. Here we identify RNF220 (RING finger protein 220) as a novel ubiquitin ligase for Sin3B. As a conserved RING protein, RNF220 can bind E2 and mediate auto-ubiquitination of itself. Through a yeast two-hybrid screen, we isolated Sin3B as one of its targets, which is a scaffold protein of the Sin3/HDAC (histone deacetylase) corepressor complex. RNF220 specifically interacts with Sin3B both in vitro and in vivo. Sin3B can be regulated by the ubiquitin-proteasome system. Co-expression of RNF220 promotes the ubiquitination and proteasomal degradation of Sin3B. Taken together, these results reveal a new mechanism for regulating the Sin3/HDAC complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号