首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copy number variation (CNV), an essential form of genetic variation, has been increasingly recognized as one promising genetic marker in the analysis of animal genomes. Here, we used the Equine 70K single nucleotide polymorphism genotyping array for the genome‐wide detection of CNVs in 96 horses from three diverse Chinese breeds: Debao pony (DB), Mongolian horse (MG) and Yili horse (YL). A total of 287 CNVs were determined and merged into 122 CNV regions (CNVRs) ranging from 199 bp to 2344 kb in size and distributed in a heterogeneous manner on chromosomes. These CNVRs were integrated with seven existing reports to generate a composite genome‐wide dataset of 1558 equine CNVRs, revealing 69 (56.6%) novel CNVRs. The majority (69.7%) of the 122 CNVRs overlapped with 438 genes, whereas 30.3% were located in intergenic regions. Most of these genes were associated with common CNVRs, which were shared by divergent horse breeds. As many as 60, 42 and 91 genes overlapping with the breed‐specific ss were identified in DB, MG and YL respectively. Among these genes, FGF11, SPEM1, PPARG, CIDEB, HIVEP1 and GALR may have potential relevance to breed‐specific traits. These findings provide valuable information for understanding the equine genome and facilitating association studies of economically important traits with equine CNVRs in the future.  相似文献   

2.
拷贝数变异的全基因组关联分析   总被引:3,自引:0,他引:3  
基因组拷贝数变异(copy number variations,CNVs)是指与基因组参考序列相比,基因组中≥1 kb的DNA片段插入、缺失和/或扩增,及其互相组合衍生出的复杂变异.由于其具有分布范围广、可遗传、相对稳定和高度异质性等特点,目前认为,CNVs是一种新的可以作为疾病易感标志的基因组DNA多态性,其变异引起的基因剂量改变可以导致表型改变.最近,一种基于CNVs的新的疾病易感基因鉴定策略——CNV全基因组关联分析开始出现,这一策略和传统的基于单核苷酸多态性的关联分析具有互补性,通过认识基因组结构变异可以认识复杂疾病的分子机制和遗传基础.  相似文献   

3.
Genomic and genetic variation among six Italian chicken native breeds (Livornese, Mericanel della Brianza, Milanino, Bionda Piemontese, Bianca di Saluzzo and Siciliana) were studied using single nucleotide polymorphism (SNP) and copy number variants (CNV) as markers. A total of 94 DNA samples genotyped with Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix) were used in the analyses. The results showed the genetic and genomic variability occurring among the six Italian chicken breeds. The genetic relationship among animals was established with a principal component analysis. The genetic diversity within breeds was calculated using heterozygosity values (expected and observed) and with Wright’s F-statistics. The individual-based CNV calling, based on log R ratio and B-allele frequency values, was done by the Hidden–Markov Model (HMM) of PennCNV software on autosomes. A hierarchical agglomerative clustering was applied in each population according to the absence or presence of definite CNV regions (CNV were grouped by overlapping of at least 1 bp). The CNV map was built on a total of 1003 CNV found in individual samples, after grouping by overlaps, resulting in 564 unique CNV regions (344 gains, 213 losses and 7 complex), for a total of 9.43 Mb of sequence and 1.03% of the chicken assembly autosome. All the approaches using SNP data showed that the Siciliana breed clearly differentiate from other populations, the Livornese breed separates into two distinct groups according to the feather colour (i.e. white and black) and the Bionda Piemontese and Bianca di Saluzzo breeds are closely related. The genetic variability found using SNP is comparable with that found by other authors in the same breeds using microsatellite markers. The CNV markers analysis clearly confirmed the SNP results.  相似文献   

4.
5.

Background

Understanding the genetic basis of adaptive evolution is one of the major goals in evolutionary biology. Recently, it has been revealed that gene copy number variations (GCNVs) constitute significant proportions of genomic diversities within natural populations. However, it has been unclear whether GCNVs are under positive selection and contribute to adaptive evolution. Parallel evolution refers to adaptive evolution of the same trait in related but independent lineages, and three-spined stickleback (Gasterosteus aculeatus) is a well-known model organism. Through identification of genetic variations under parallel selection, i.e., variations shared among related but independent lineages, evidence of positive selection is obtained. In this study, we investigated whole-genome resequencing data from the marine and freshwater groups of three-spined sticklebacks from diverse areas along the Pacific and Atlantic Ocean coastlines, and searched for GCNVs under parallel selection.

Results

We identified 24 GCNVs that showed significant differences in the numbers of mapped reads between the two groups, and this number was significantly larger than that expected by chance. The derived group, i.e., freshwater group, was typically characterized by larger gene-copy numbers, which implied that gene duplications or multiplications helped with adaptation to the freshwater environment. Some of the identified GCNVs were those of multigenic family genes, which is consistent with the theory that fatal effects due to copy-number changes of multigenic family genes tend to be less than those of single-copy genes.

Conclusion

The identification of GCNVs that were likely under parallel selection suggests that contribution of GCNVs should be considered in studies on adaptive evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-735) contains supplementary material, which is available to authorized users.  相似文献   

6.
H. Zhou  D. Li  W. Liu  N. Yang 《Animal genetics》2013,44(3):276-284
Copy number variation (CNV) is considered an important genetic variation, contributing to many economically important traits in the chicken. Although CNVs can be detected using a comparative genomic hybridization array, the high‐density SNP array has provided an alternative way to identify CNVs in the chicken. In the current study, a chicken 60K SNP BeadChip was used to identify CNVs in two distinct chicken genetic lines (White Leghorn and dwarf) using the penncnv program. A total of 209 CNV regions were identified, distributing on chromosomes 1–22 and 24–28 and encompassing 13.55 Mb (1.42%) of chicken autosomal genome area. Three of seven selected CNVs (73.2% individuals) were completely validated by quantitative PCR. To our knowledge, this is the first report in the chicken identifying CNVs using a SNP array. Identification of 190 new identified CNVs illustrates the feasibility of the chicken 60K SNP BeadChip to detect CNVs in the chicken, which lays a solid foundation for future analyses of associations of CNVs with economically important phenotypes in chickens.  相似文献   

7.
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   

8.
Large-scale structural variations, such as chromosomal translocations, can have profound effects on fitness and phenotype, but are difficult to identify and characterize. Here, we describe a simple and effective method aimed at identifying translocations using only the dosage of sequence reads mapped on the reference genome. We binned reads on genomic segments sized according to sequencing coverage and identified instances when copy number segregated in populations. For each dosage-polymorphic 1 Mb bin, we tested independence, effectively an apparent linkage disequilibrium (LD), with other variable bins. In nine potato (Solanum tuberosum) dihaploid families translocations affecting pericentromeric regions were common and in two cases were due to genomic misassembly. In two populations, we found evidence for translocation affecting euchromatic arms. In cv. PI 310467, a nonreciprocal translocation between chromosomes (chr.) 7 and 8 resulted in a 5–3 copy number change affecting several Mb at the respective chromosome tips. In cv. “Alca Tarma,” the terminal arm of chr. 4 translocated to the tip of chr. 1. Using oligonucleotide-based fluorescent in situ hybridization painting probes (oligo-FISH), we tested and confirmed the predicted arrangement in PI 310467. In 192 natural accessions of Arabidopsis thaliana, dosage haplotypes tended to vary continuously and resulted in higher noise, while apparent LD between pericentromeric regions suggested the effect of repeats. This method, LD-CNV, should be useful in species where translocations are suspected because it tests linkage without the need for genotyping.  相似文献   

9.
Gene copy number variation (CNV) has been associated with phenotypic variability in animals and plants, but a genomewide understanding of their impacts on phenotypes is largely restricted to human and agricultural systems. As such, CNVs have rarely been considered in investigations of the genomic architecture of adaptation in wild species. Here, we report on the genetic mapping of gene CNVs in white spruce, which lacks a contiguous assembly of its large genome (~20 Gb), and their relationships with adaptive phenotypic variation. We detected 3,911 gene CNVs including de novo structural variations using comparative genome hybridization on arrays (aCGH) in a large progeny set. We inferred the heterozygosity at CNV loci within parents by comparing haploid and diploid tissues and genetically mapped 82 gene CNVs. Our analysis showed that CNVs were distributed over 10 linkage groups and identified four CNV hotspots that we predict to occur in other species of the Pinaceae. Significant relationships were found between 29 of the gene CNVs and adaptive traits based on regression analyses with timings of bud set and bud flush, and height growth, suggesting a role for CNVs in climate adaptation. The importance of CNVs in adaptive evolution of white spruce was also indicated by functional gene annotations and the clustering of 31% of the mapped adaptive gene CNVs in CNV hotspots. Taken together, these results illustrate the feasibility of studying CNVs in undomesticated species and represent a major step towards a better understanding of the roles of CNVs in adaptive evolution.  相似文献   

10.
K Suzuki  K Iwata  K Yoshida 《DNA research》2001,8(4):141-152
The phytopathogenic bacterium Agrobacterium tumefaciens is unique in that it possesses both linear and circular DNA chromosomes in addition to a plant-tumor-inducing (Ti) plasmid. We analyzed the two chromosomal DNA molecules in strain MAFF301001, whose Ti plasmid has already been sequenced completely. Physical maps of the chromosomal DNAs were constructed by Southern hybridization experiments using Pme I and Swa I fragments and short fragments bridging the Swa I fragments with special care to avoid any missing fragment. Hybridization with 16S rDNA probe showed one rDNA locus on the linear chromosome and two loci on the circular chromosome. For this bacterium to be pathogenic, not only Ti plasmid but also chromosomal genes are required. The chromosomal virulence (chv) genes (chvA, chvB, chvD, chvE, chvG, chvH, and chvI) and the chromosomal genes affecting the virulence [acvB, pgm(exoC), glgP, miaA, and ros] were successfully mapped onto 5 different regions in the chromosomal physical maps. These chv genes and the chromosomal genes affecting the virulence other than pgm and glgP were found on the circular chromosome, whereas the pgm and glgP genes were located on the linear chromosome. In contrast to the large terminal inverted repeats of Streptomyces linear chromosomal DNA, no hybridization signal was detected between left and right terminal fragments of the linear A. tumefaciens chromosome. Quantitative analysis of DNA fragments indicated that the copy numbers of the two chromosomal DNAs and the Ti plasmid are identical.  相似文献   

11.
Chai Y  Norman T  Kolter R  Losick R 《The EMBO journal》2011,30(7):1402-1413
Bacillus subtilis chooses between matrix production and spore formation, which are both controlled by the regulator Spo0A~P. We report that metabolism and chromosome copy number dictate which fate is adopted. Conditions that favour low Spo0A~P levels promote matrix production, whereas conditions favouring high levels trigger sporulation. Spo0A~P directs the synthesis of SinI, an antirepressor for the SinR repressor of matrix genes. The regulatory region of sinI contains an activator site that Spo0A~P binds strongly and operators that bind Spo0A~P weakly. Evidence shows that low Spo0A~P levels turn sinI ON and high levels turn sinI OFF and instead switch sporulation ON. Cells in which sinI and sinR were transplanted from their normal position near the chromosome replication terminus to positions near the origin and cells that harboured an extra copy of the genes were blocked in matrix production. Thus, matrix gene expression is sensitive to the number of copies of sinI and sinR. Because cells at the start of sporulation have two chromosomes and matrix-producing cells one, chromosome copy number could contribute to cell-fate determination.  相似文献   

12.
Systemic lupus erythematosus (SLE) is a polygenic, systemic, autoimmune disease. Copy number variants (CNVS) have been discovered to be associated with a number of complex disorders. We undertook the current study to explore the potential associations between genomic CNVS and SLE in Chinese Han population. In the discovery stage, seven SLE patients were examined with the high-density comparative genomic hybridization microarrays in the screening test for SLE associated CNVS. Then, in the validation stage, 135 SLE patients and 219 matched healthy subjects were investigated for the CNVS of gene HLA-DRB5 by AccuCopyTM technol- ogy. Quantitative polymerase chain reaction was carried out to determine the copy number (CN) and mRNA level of HLA- DRB5 in SLE patients. Although the mRNA level of HLA- DRB5 between the CN deletion group and the CN normal group in SLE patients was not statistically positive (P = 0.46), our results still showed more CN of HLA-DRB5 in SLE patients than in healthy controls (P = 3.98×10^-6). Odds ratio for CN deletion was 0.38 (95% confidence interval (C1), 0.23-0.61, P = 7.79×10^-5) and for CN duplication was 1.89 (95% CI, 0.56-7.66, P = 0.37), respectively. These findings indicated that CNVS of HLA-DRB5 was associated with the risk of SLE, and CN deletion appeared to be protective for SLE.  相似文献   

13.
With the completion of Human Genome Project,International HapMap Project and the publication of copy number variation in human genome,a great number of accurate,rapid,and cost-effective technologies for SNP analysis have been developed,promoting the research of the complex diseases.This article presents a review of widely used genotyping techniques,and the progress and prospect in the study of complex diseases in terms of the projects and achievements of Chinese National Human Genome Center at Shanghai(CHGC...  相似文献   

14.
高通量测序技术和生物信息学的发展极大的促进了山羊分子生物学研究。山羊参考基因组的不断完善以及基因组重测序技术的应用,在全基因组水平上发现了大量的遗传变异信息(SNP、Indel和CNV),丰富了山羊分子群体遗传学研究利用的分子标记。综述了山羊参考基因组组装和全基因组变异图谱的构建及其在山羊上的研究进展,以期为进一步利用分子遗传标记进行山羊的各种性状的遗传基础研究和遗传资源保护利用提供科学依据和参考。  相似文献   

15.
Copy number variations (CNVs) have recently been identified as promising sources of genetic variation, complementary to single nucleotide polymorphisms (SNPs). As a result, detection of CNVs has attracted a great deal of attention. In this study, we performed genome‐wide CNV detection using Illumina Bovine HD BeadChip (770k) data on 792 Simmental cattle. A total of 263 CNV regions (CNVRs) were identified, which included 137 losses, 102 gains and 24 regions classified as both loss and gain, covering 35.48 Mb (1.41%) of the bovine genome. The length of these CNVRs ranged from 10.18 kb to 1.76 Mb, with an average length of 134.78 kb and a median length of 61.95 kb. In 136 of these regions, a total of 313 genes were identified related to biological functions such as transmembrane activity and olfactory transduction activity. To validate the results, we performed quantitative PCR to detect nine randomly selected CNVRs and successfully confirmed seven (77.6%) of them. Our results present a map of cattle CNVs derived from high‐density SNP data, which expands the current CNV map of the cattle genome and provides useful information for investigation of genomic structural variation in cattle.  相似文献   

16.
Chromosomal mutants were isolated in Escherichia coli that altered carotenoid production from transformed carotenoid biosynthesis genes on a pACYC-derived plasmid (pPCB15). The mutations were mapped by sequencing. One group of mutations appeared to affect the cell metabolism without changing the copy number of the carotenoid synthesis plasmid. The other group of mutations either increased or decreased the copy number of the pPCB15 plasmid as determined by real-time PCR. The copy number change in most mutants was likely specific for ColE1-type plasmids for which copy number is controlled by a small antisense RNA. This collection of host strains would be useful for fine tuning expression of proteins and adjusting production of desired molecules without recloning to different vectors.  相似文献   

17.
Copy number variations (CNVs) are thought to act as an important genetic mechanism underlying phenotypic heterogeneity. Impaired folate metabolism can result in neural tube defects (NTDs). However, the precise nature of the relationship between low folate status and NTDs remains unclear. Using an array‐comparative genomic hybridization (aCGH) assay, we investigated whether CNVs could be detected in the NTD embryonic neural tissues of methotrexate (MTX)‐induced folate dysmetabolism pregnant C57BL/6 mice and confirmed the findings with quantitative real‐time PCR (qPCR). The CNVs were then comprehensively investigated using bioinformatics methods to prioritize candidate genes. We measured dihydrofolate reductase (DHFR) activity and concentrations of folate and relevant metabolites in maternal serum using enzymologic method and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Three high confidence CNVs on XqA1.1, XqA1.1‐qA2, and XqE3 were found in the NTD embryonic neural tissues. Twelve putative genes and three microRNAs were identified as potential susceptibility candidates in MTX‐induced NTDs and possible roles in NTD pathogenesis. DHFR activity and 5‐methyltetrahydrofolate (5‐MeTHF), 5‐formyltetrahydrofolate (5‐FoTHF), and S‐adenosylmethionine (SAM) concentrations of maternal serum decreased significantly after MTX injection. These findings suggest that CNVs caused by defects in folate metabolism lead to NTD, and further support the hypothesis that folate dysmetabolism is a direct cause for CNVs in MTX‐induced NTDs. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 877–893, 2014  相似文献   

18.
Current understanding of the underlying molecular network and mechanism for attention-deficit hyperactivity disorder (ADHD) is lacking and incomplete. Previous studies suggest that genomic structural variations play an important role in the pathogenesis of ADHD. For effective modeling, deep learning approaches have become a method of choice, with ability to predict the impact of genetic variations involving complicated mechanisms. In this study, we examined copy number variation in whole genome sequencing from 116 African Americans ADHD children and 408 African American controls. We divided the human genome into 150 regions, and the variation intensity in each region was applied as feature vectors for deep learning modeling to classify ADHD patients. The accuracy of deep learning for predicting ADHD diagnosis is consistently around 78% in a two-fold shuffle test, compared with ∼50% by traditional k-mean clustering methods. Additional whole genome sequencing data from 351 European Americans children, including 89 ADHD cases and 262 controls, were applied as independent validation using feature vectors obtained from the African American ethnicity analysis. The accuracy of ADHD labeling was lower in this setting (∼70–75%) but still above the results from traditional methods. The regions with highest weight overlapped with the previously reported ADHD-associated copy number variation regions, including genes such as GRM1 and GRM8, key drivers of metabotropic glutamate receptor signaling. A notable discovery is that structural variations in non-coding genomic (intronic/intergenic) regions show prediction weights that can be as high as prediction weight from variations in coding regions, results that were unexpected.  相似文献   

19.
刘静  王亚楠  孙亚奇  王洪洋  汪超  彭中镇  刘榜 《遗传》2014,36(4):354-359
拷贝数变异(Copy number variation, CNV)是染色体上发生的一种微结构变异, 已引起越来越多研究者的关注。本课题组前期已获得猪13号染色体上的32个CNV区域(CNV region, CNVR), 为了发掘CNVR内的基因信息, 文章在线检索了上述CNVR内的基因并进行基因本体(Gene Ontology)分析。结果共发现236个基因, 其中有注释基因169个, 主要参与蛋白质水解、细胞粘附、大分子降解等生物过程。为了探索这些基因拷贝数变异的遗传规律, 文章选择RCAN1(Regulators of calcineurin 1)基因为候选基因, 利用QPCR方法在莱芜猪群中检测了该基因的拷贝数, 并分析了CNV在莱芜猪3个家系中的遗传规律。结果表明, RCAN1基因在莱芜猪群体中存在拷贝数的缺失、重复现象, 其拷贝数变异的遗传规律符合孟德尔遗传方式。  相似文献   

20.
Wang Y  Gu X  Feng C  Song C  Hu X  Li N 《Animal genetics》2012,43(3):282-289
The discovery of copy number variation (CNV) in the genome has provided new insight into genomic polymorphism. Studies with chickens have identified a number of large CNV segments using a 385k comparative genomic hybridization (CGH) chip (mean length >140 kb). We present a detailed CNV map for local Chinese chicken breeds and commercial chicken lines using an Agilent 400k array CGH platform with custom-designed probes. We identified a total of 130 copy number variation regions (CNVRs; mean length = 25.70 kb). Of these, 104 (80.0%) were novel segments reported for the first time in chickens. Among the 104 novel CNVRs, 56 (53.8%) of the segments were non-coding sequences, 65 (62.5%) showed the gain of DNA and 40 (38.5%) showed the loss of DNA (one locus showed both loss and gain). Overlapping with the formal selective sweep data and the quantitative trait loci data, we identified four loci that might be considered to be high-confidence selective segments that arose during the domestication of chickens. Compared with the CNVRs reported previously, genes for the positive regulation of phospholipase A2 activity were discovered to be significantly over-represented in the novel CNVRs reported here by gene ontology analysis. Availability of our results should facilitate further research in the study of the genetic variability in chicken breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号