首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:观察奥沙利铂联合热疗对人结肠癌细胞SW480增殖及凋亡的影响,确定联合用药的效果,为临床方案提供参考。方法:采用MTT(四唑盐)法检测热疗、奥沙利铂及联合用药对细胞增殖的影响;瑞士吉姆萨染色法观察细胞形态;流式细胞仪检测细胞凋亡和周期;Western blot检测Bax、Bcl-2以及Caspase8蛋白表达量变化;q PCR检测Bax、Bcl-2以及Caspase8 m RNA的积累。结果:热疗联合奥沙利铂可以显著抑制细胞增殖,与对照组相比,热疗组、化疗组、联合组细胞凋亡率分别为16.2%、20.5%和36.1%,具有显著性差异(P0.01);细胞学形态中,热疗组细胞发生皱缩,化疗组细胞膜破裂;化疗将细胞阻滞在G2/M期,热疗和联合组将细胞阻滞S期;Western blot和qPCR显示Bax/Bcl-2比值上升,Caspase8表达量增加,联合组三种蛋白的表达量均与对照组具有显著性差异(P0.01)。结论:热疗联合奥沙利铂可以显著促进细胞凋亡,提高治疗效果,为结肠癌的治疗提供参考。  相似文献   

2.
EphA8 is a member of the erythropoietin-producing hepatocellular receptor (Eph) family of receptor tyrosine kinases. Ephs and their ephrins ligands play crucial roles in many cellular processed by mediating intracellular signaling resulting from cell–cell interactions. But the underlying mechanisms of EphA8 in gastric cancer (GC) remains unclearly. 298 clinical specimens in tissues microarray, and was found to be significantly higher in GC tissues compared with nontumor tissues (p < 0.001). EphA8 expression was also strongly associated with differentiation level (p = 0.025), tumor-node-metastasis stage (p = 0.019), and poor 5 years survival (p < 0.001). A panel of GC cell lines showed reduced proliferation, invasion, and migration capacities after RNA-mediated knockdown of EphA8, concomitant with downregulation of the proliferation-related proteins (cyclin A, cyclin D1, and cyclin-dependent kinase 4) and the metastasis-related (matrix metalloproteinases MMP2, and MMP9). EphA8 knockdown also decreased expression of the protease ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and ADAM10-related protein AKT, suggesting an interaction between EphA8 and ADAM10. In conclusion, we found that EphA8, which is highly expressed in GC tissues, stimulates proliferation, invasion, and migration of cancer cells, and is an independent risk factor for poor prognosis of GC. These dates suggest that EphA8 could be new diagnostic and/or therapeutic targets for GC.  相似文献   

3.
Purpose: To observe the apoptotic effects of NSMF on human hepatoma cells and to investigate the mechanisms. Materials and methods: Human hepatoma cell line Bel-7402 and Hep G-2 were treated by 0.2?T rotary NSMF (30?min/d) with 250?Hz, 400?Hz and 500?Hz for 3?d and 6?d, respectively. Apoptosis was analyzed with flow cytometry. Cell proliferation was measured with XTT assay. Expression of Bcl-2, caspase3/8/9 was analyzed with ELISA. Results: After 6?d treatment, significant apoptosis was induced by 400?Hz in Bel-7402 cells. Slight cell apoptosis was observed at 250?Hz, while Hep G-2 cells exhibited slight apoptosis at 250?Hz and 400?Hz. After 3?d treatment, no apoptosis exhibited in both cell types. Compared with control group, expression of Bcl-2 and Caspase 8 in treated Bel-7402 cells were significantly reduced (p?p?Conclusions: NSMF upregulates caspase 9 and downregulates Bel-2 expression, which results in higher level of active caspase 3 to trigger apoptosis in cells. Different cell types require different NSMF factors like rotary frequency and treatment time to induce apoptosis.  相似文献   

4.
Interaction of Eph receptor tyrosine kinases with their membrane bound ephrin ligands initiates bidirectional signaling events that regulate cell migratory and adhesive behavior. Whole-mount in situ hybridization revealed overlapping expression of the Epha1 receptor and its high-affinity ligands ephrin A1 (Efna1) and ephrin A3 (Efna3) in the primitive streak and the posterior paraxial mesoderm during early mouse development. These results show complex and dynamic expression for all three genes with expression domains that are successively complementary, overlapping, and divergent.  相似文献   

5.
Epithelial cells require adhesion to the extracellular matrix for survival, and in the absence of adhesion they undergo apoptosis (anoikis). This is distinct from apoptosis induced by extracellular death ligands, such as tumor necrosis factor, which result in direct activation of caspase 8. Bid is a member of the BH3-only subfamily of the Bcl-2 proteins and is important for most cell types to apoptose in response to Fas and tumor necrosis factor receptor activation. Caspase 8 cleaves full-length Bid, resulting in truncated p15 tBid. p15 tBid is potently apoptotic and activates the multidomain Bcl-2 protein, Bax, resulting in release of cytochrome c from mitochondria. We have previously shown that Bax rapidly translocates from the cytosol to mitochondria following loss of adhesion and that this is required for anoikis. We have now examined the role of Bid in anoikis. Bid translocates to mitochondria with identical kinetics as Bax. Although Bid is required for anoikis, it does not require proteolytic cleavage by caspase 8. Furthermore, it does not require Bid to interact directly with other Bcl-2 family proteins, such as Bax. Our data indicate that Bid is important for regulating apoptosis via the intrinsic pathway and has implications for how Bid may fulfill that role.  相似文献   

6.
Previous studies have shown that microRNAs (miRNAs) can control steroidogenesis in cultured granulosa cells. In this study we wanted to determine if miRNAs can also affect proliferation and apoptosis in human ovarian cells. The effect of transfection of cultured primary ovarian granulosa cells with 80 different constructs encoding human pre‐miRNAs on the expression of the proliferation marker, PCNA, and the apoptosis marker, Bax was evaluated by immunocytochemistry. Eleven out of 80 tested miRNA constructs resulted in stimulation, and 53 miRNAs inhibited expression of PCNA. Furthermore, 11 of the 80 miRNAs tested promoted accumulation of Bax, while 46 miRNAs caused a reduction in Bax in human ovarian cells. In addition, two selected antisense constructs that block the corresponding miRNAs mir‐15a and mir‐188 were evaluated for their effects on expression of PCNA. An antisense construct inhibiting mir‐15a (which precursor suppressed PCNA) increased PCNA, whereas an antisense construct for mir‐188 (which precursor did not change PCNA) did not affect PCNA expression. Verification of effects of selected pre‐mir‐10a, mir‐105, and mir‐182 by using other markers of proliferation (cyclin B1) and apoptosis (TdT and caspase 3) confirmed specificity of miRNAs effects on these processes. This is the first direct demonstration of the involvement of miRNAs in controlling both proliferation and apoptosis by ovarian granulose cells, as well as the identification of miRNAs promoting and suppressing these processes utilizing a genome‐wide miRNA screen. J. Cell. Physiol. 223: 49–56, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Cathepsin D (cat D) reportedly plays an important role in certain apoptotic processes, the downstream pathways of which involve release of cytochrome c (cyt c) from mitochondria and activation of the caspase cascade. Previous studies revealed that the B-cell lymphoma 2 (Bcl-2) family members Bax or Bid play important roles in apoptotic signal transduction between cat D and mitochondria. Here, we show that glucosamine sulfate (GS) inhibits the proliferation and induces apoptosis of human chronic myelogenous leukemia K562 cells in vitro. GS interfered with the maturation of cat D. Activation of caspase-3, cleavage of poly-(ADP-ribose)-polymerase, release of cyt c, and downregulation of Bcl-xL accompanied GS-induced apoptosis, and these processes were inhibited by the cat D inhibitor pepstatin A. However, we did not detect any altered gene expression of Bcl-2, Bax, or Bid during apoptosis. Translocation of cat D from the lysosome to the cytosol was observed in GS-treated K562 cells. These findings suggest that GS-induced K562 cell apoptosis involves the translocation of cat D from the lysosome to the cytosol. Furthermore, our findings suggest that downregulation of Bcl-xL (but not Bcl-2, Bax, or Bid) connects cat D and the mitochondrial pathway, which causes the release of cyt c and activation of the caspase cascade during GS-induced apoptosis of K562 cells.  相似文献   

8.
Previous studies have shown that breast tissues and breast cell lines convert progesterone (P) to 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP) and that 3αHP suppresses, whereas 5αP promotes, cell proliferation and detachment. The objectives of the current studies were to determine if the 5αP- and 3αHP-induced changes in cell numbers are due to altered rates of mitosis and/or apoptosis, and if 3αHP and 5αP act on tumorigenic and non-tumorigenic cells, regardless of estrogen (E) and P receptor status. The studies were conducted on tumorigenic (MCF-7, MDA-MB-231, T47D) and non-tumorigenic (MCF-10A) human breast cell lines, employing several methods to assess the effects of the hormones on cell proliferation, mitosis, apoptosis and expression of Bcl-2, Bax and p21. In all four cell lines, 5αP increased, whereas 3αHP decreased cell numbers, [3H]thymidine uptake and mitotic index. Apoptosis was stimulated by 3αHP and suppressed by 5αP. 5αP resulted in increases in Bcl-2/Bax ratio, indicating decreased apoptosis; 3αHP resulted in decreases in Bcl-2/Bax ratio, indicating increased apoptosis. The effects of either 3αHP or 5αP on cell numbers, [3H]thymidine uptake, mitosis, apoptosis, and Bcl-2/Bax ratio, were abrogated when cells were treated simultaneously with both hormones. The expression of p21 was increased by 3αHP, and was unaffected by 5αP. The results provide the first evidence that 5αP stimulates mitosis and suppresses apoptosis, whereas 3αHP inhibits mitosis and stimulates apoptosis. The opposing effects of 5αP and 3αHP were observed in all four breast cell lines examined and the data suggest that all breast cancers (estrogen-responsive and unresponsive) might be suppressed by blocking 5αP formation and/or increasing 3αHP. The findings further support the hypothesis that progesterone metabolites are key regulatory hormones and that changes in their relative concentrations in the breast microenvironment determine whether breast tissues remain normal or become cancerous.  相似文献   

9.
ABSTRACT

MiR-181a-5p’s mechanism in hypoxia–reoxygenation (H/R)-induced cardiomyocytes apoptosis has not been clarified. This study verified that SIRT1 was the target of miR-181a-5p. MiR-181a-5p expression was up-regulated or down-regulated in H/R-induced cardiomyocytes, and SIRT1 was transfected into cells alone or in combination with miR-181a-5p. Cell viability, apoptosis, levels of released lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the Bcl-2, Bax, and Caspase 3 levels in treated cells were tested. On the one hand, down-regulated miR-181a-5p promoted cell viability, reduced released LDH and MDA, and increased SOD level in H/R-induced cardiomyocytes. On the other hand, miR-181a-5p inhibited apoptosis and elevated Bcl-2 expression while decreasing the expressions of Bax and Caspase 3 in treated cells, but the effects of miR-181a-5p could be rescued by SIRT1. In conclusion, miR-181a-5p involved in H/R-induced cardiomyocytes apoptosis through regulating SIRT1, which might become a novel direction for related diseases.  相似文献   

10.
Tumor necrosis factor (TNF) participates in regulation of many processes, including carcinogenesis and apoptosis. However, at present, there are practically no studies on peculiarities of apoptosis control in tnf-knockout (tnf-/-) mice. These mice develop without morphologic abnormalities, but they seem to have impairment of many biological processes, such as inflammation, programmed cell death, etc. Therefore, the goal of our work was to study possible pathways of regulation of apoptosis in the absence of TNF in neurosecretory cells (NSC) of young and old mice. For this purpose, we determined immunohistochemically expression of apoptosis markers caspase-8, caspase-9, Bax, Bcl-2, Mcl-1, neuropeptide vasopressin and the apoptosis level in hypothalamus of tnf-knockout mice of different ages as compared with mice with unchanged level of TNF synthesis. It was shown that the apoptosis activation observed during aging did not depend on the tnf gene and that apoptosis at aging was caspase-dependent. It was revealed that at aging in mouse NSC the external cell death pathway with participation of caspase-8 is activated. The pathways mediating cell death in different neurosecretory centers at aging are different. Thus, in supraoptic nucleus (SON), in all studied animal groups, an important cause of the NSC apoptosis is Bax. In paraventricular nucleus (PVN), of the greater importance is a decrease of the anti-apoptotic protection. Hence, misbalance of synthesis of proteins of the Bcl-2 family plays an important role in development of senescent apoptosis.  相似文献   

11.
Irisin is a newly discovered myokine that links exercise with metabolic homeostasis. It is involved in modest weight loss and improves glucose intolerance. However, the direct effects and mechanisms of irisin on vascular endothelial cells (ECs) are not fully understood. In the current study, we demonstrated that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) proliferation. It was further demonstrated that this pro-proliferation effect was mediated by irisin-induced activation of extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling with U0126 decreased the pro-proliferation effect of irisin on HUVECs. It was also demonstrated that irisin reduced high glucose-induced apoptosis by up-regulating Bcl-2 expression and down-regulating Bax, Caspase-9 and Caspase-3 expression. In summary, these results suggested that irisin plays a novel role in sustaining endothelial homeostasis by promoting HUVEC proliferation via the ERK signaling pathway and protects the cell from high glucose-induced apoptosis by regulating Bcl-2,Bax and Caspase expression.  相似文献   

12.
Caspases play important roles in the initiation and progression of apoptosis. In experimental models of ATP depletion, we have demonstrated the activation of caspase-9, -8, and -3, which is followed by the development of apoptotic morphology. To determine the specific contribution of caspase-9 to ATP depletion-induced apoptosis, we transfected renal epithelial cells with its endogenous dominant-negative inhibitor caspase-9S. Two cell clones with stable transfection were obtained. These clones expressed caspase-9S, and the cytosol isolated from these cells was resistant to cytochrome c-induced caspase activation in vitro. The clones were then examined for ATP depletion-induced apoptosis. Compared with the wild-type cells, the caspase-9S clones were markedly resistant to apoptosis in this model. Caspase activation was also inhibited. Surprisingly, these clones also showed significantly less cytochrome c release during ATP-depletion. Moreover, Bax translocation to mitochondria was inhibited, suggesting that these clones were resistant to apoptosis not only at the cytosolic caspase activation level but also at the upstream mitochondrial level. To gain insights into the mitochondrial resistance, we analyzed the expression of Bcl-2 family proteins. While the expression of Bax, Bak, and Bcl-2 was comparable to the wild-type cells, the selected clones showed specific up-regulation of Bcl-XL, an anti-apoptotic protein. We conclude that the selected clones were resistant to apoptosis at two levels. In the cytosol, they expressed dominant negative caspase-9, and at the mitochondria they up-regulated Bcl-XL.  相似文献   

13.
Hyperglycemia initiates a sequence of events that leads to the development of diabetic retinopathy. We explored the effect of re-institution of good blood glucose control on apoptosis and apoptosis related genes (Bax and Bcl-2) in the retina of diabetic rats. Fifty male Wistar rats randomly divided into five groups : normal control group (CON), diabetic rats with high blood glucose levels for 8 months group (DM) ,diabetic rats with good blood glucose control for 8 months group (DM1),diabetic rats with poor blood glucose control for 2 month followed by good blood glucose control for six additional months group (DM2), rats with poor blood glucose control for 4 months followed by good blood glucose levels for four additional months group (DM3). Expression of Bax and Bcl-2 in the retina was studied by immunohistochemistry and the apoptotic cells were stained using the TUNEL method. The apoptotic cell, expression of Bax and Bcl-2 and the ratio of Bax to Bcl-2 in the retina was increased in DM group compared with normal rats’ (P < 0.01). There was no significant difference in apoptotic cells and the ratio of Bax to Bcl-2 between DM1 group and CON group. The number of TUNEL positive cells and Bax to Bcl-2 ratio was partially reversed in DM2 group. But glucose control had no effect on the apoptotic cells and the expression of Bax and Bcl-2 in DM3 group. There was a positive correlation between apoptotic cells and Bax/Bcl-2 ratio in the retina (r = 0.808, P < 0.01). Good blood glucose control at early stage can decrease the number of apoptotic cells in the retina; the decreased apoptosis is correlated with the down-regulation of Bax to Bcl-2 ratio.  相似文献   

14.
LncRNA RP11-363E7.4 has been shown to be downregulated in gastric cancer (GC), while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanisms is unclear. The purpose of this study was to explore the functional role and underlying molecular mechanisms of lncRNA RP11-363E7.4 involved in GC progress.To address the question, quantitative real-time PCR assay was performed to confirm lncRNA RP11-363E7.4 expression levels in GC tissues and cell lines. Cell proliferation, apoptosis, migration and invasion were estimated using Cell Counting Kit-8, colony formation, scratch wound healing and Transwell assays. Potential molecular mechanisms were evaluated using western blot assay. The results showed that lncRNA RP11-363E7.4 was significantly downregulated in GC cell lines and 82 paired tissues. The correlation between expression and clinicopathological features indicated that low expression of lncRNA RP11-363E7.4 was associated with T stage (P = .010). Functional experiments showed that overexpression of lncRNA RP11-363E7.4 prevented proliferation, migration, and invasion and induced apoptosis of GC cells. Western blot assay revealed that lncRNA RP11-363E7.4 functioned via the p53, Bax/Bcl-2, β-catenin pathway. In summary, this study revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. Significance of the study :LncRNA RP11-363E7.4 has been shown to be downregulated in GC, while the effect of lncRNA RP11-363E7.4 on GC and its potential molecular mechanism is unclear. We revealed that lncRNA RP11-363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. LncRNA RP11-363E7.4 might become an attractive diagnostic and prognostic biomarker of GC and a promising target for GC treatment.  相似文献   

15.
Postmenopausal women with estrogen receptor positive (ER+) breast cancer frequently respond paradoxically to estrogen administration with tumor regression. Using both LTED and E8CASS cells derived from MCF-7 breast cancer cells by long-term estrogen-deprivation, we previously reported that 17 -estradiol (estradiol) is a powerful, pro-apoptotic hormone which kills the cancer cells through activation of the Fas/FasL death receptor pathway. We postulated that the mitochondrial interactive protein Bcl-2 might play a role in the regulation of estradiol-induced apoptosis in both LTED and E8CASS cells. In this study, we assessed estradiol effects on cell growth, proliferation and apoptosis. Additionally we investigated the effect of estradiol on caspase activation, NF-KB and Bcl-2 expression. The functional role of Bcl-2 in estradiol-induced apoptosis was further studied by knockdown or decrease of Bcl-2 with siRNA. Our results show that estradiol significantly inhibited cell growth primarily through a pro-apoptotic action involving caspase-7 and 9 activations (p < 0.01). Basal Bcl-2 and NF-KB levels were greatly elevated and estradiol decreased NF-KB, but not Bcl-2 expression. Knockdown of Bcl-2 expression with siRNA decreased the levels of this protein by 9 fold (p < 0.01). This reduction markedly sensitized both LTED and E8CASS cells to the pro-apoptotic action of estradiol, leading to a synergistic induction of apoptosis and a concomitant reduction in cell number (p < 0.01). Therefore, down-regulation of Bcl-2 synergistically enhanced estradiol-induced apoptosis in ER+ postmenopausal breast cancer cells.  相似文献   

16.
Postmenopausal women with estrogen receptor positive (ER+) breast cancer frequently respond paradoxically to estrogen administration with tumor regression. Using both LTED and E8CASS cells derived from MCF-7 breast cancer cells by long-term estrogen-deprivation, we previously reported that 17 -estradiol (estradiol) is a powerful, pro-apoptotic hormone which kills the cancer cells through activation of the Fas/FasL death receptor pathway. We postulated that the mitochondrial interactive protein Bcl-2 might play a role in the regulation of estradiol-induced apoptosis in both LTED and E8CASS cells. In this study, we assessed estradiol effects on cell growth, proliferation and apoptosis. Additionally we investigated the effect of estradiol on caspase activation, NF-KB and Bcl-2 expression. The functional role of Bcl-2 in estradiol-induced apoptosis was further studied by knockdown or decrease of Bcl-2 with siRNA. Our results show that estradiol significantly inhibited cell growth primarily through a pro-apoptotic action involving caspase-7 and 9 activations (p < 0.01). Basal Bcl-2 and NF-KB levels were greatly elevated and estradiol decreased NF-KB, but not Bcl-2 expression. Knockdown of Bcl-2 expression with siRNA decreased the levels of this protein by 9 fold (p < 0.01). This reduction markedly sensitized both LTED and E8CASS cells to the pro-apoptotic action of estradiol, leading to a synergistic induction of apoptosis and a concomitant reduction in cell number (p < 0.01). Therefore, down-regulation of Bcl-2 synergistically enhanced estradiol-induced apoptosis in ER+ postmenopausal breast cancer cells.  相似文献   

17.
Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0–G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.  相似文献   

18.
Recently, the relationship between apoptosis and cancer has been emphasized and the induction of apoptosis is recognized as one of the key mechanisms of anti-cancer agents. Marine-derived fungi are valuable sources of structurally diverse bioactive compounds with anticancer activity. In the present study, a marine-derived fungus, Microsporum sp. was cultured and a prenylated indole alkaloid, neoechinulin A was isolated from the culture broth extract. Neoechinulin A has shown cytotoxic effect on human cervical carcinoma HeLa cells and its apoptosis induction in HeLa cells was investigated by the expressions of p53, p21, Bax, Bcl-2, Caspase 9, and Caspase 3 proteins. Western blot analysis has revealed that neoechinulin A could induce cell apoptosis through down-regulating of Bcl-2 expression, up-regulating of Bax expression, and activating the caspase-3 pathway. Collectively, these results suggest that neoechinulin A could be a potential candidate in the field of anticancer drug discovery against human cervical cancer.  相似文献   

19.
Neuroprotection of aucubin in primary diabetic encephalopathy   总被引:1,自引:0,他引:1  
Hippocampal neuronal apoptosis accompanied by impairment of cognitive function occurs in primary diabetic encephalopathy. In this study, we investigated the neuroprotective mechanism of the iridoid glycoside, aucubin, using rats (n=8). Diabetes mellitus was induced in the rats by intraperitoneal (i.p.) injection of streptozotocin (60 mg/kg body weight). After 65 d, half of the DM rats were administered aucubin (5 mg/kg; i.p.) for 15 d, yielding treatment DM+A. A third group of rats received no streptozotocin or aucibin, and served as controls (CON). Encephalopathy was assessed using Y-maze behavioral testing. Rats were euthanized on Day 87, and hippocampi were excised for visual (light and transmission electron microscopic) and immunochemical (Western blot; immunohistochemical) assessments of the CA1 subfield for apoptosis and expression of regulatory proteins Bcl-2 and Bax. Treatment responses to all the parameters examined (body weight, plasma glucose, Y-maze error rates, pyramidal cell ultrastructure, proportions of apoptotic cells, levels of expression of Bcl-2 and Bax, and survivability of neuronal cells) were identical: there were highly significant differences between DM and CON groups (P<0.001), but the effects were significantly moderated (P<0.01) in DM+A compared with DM. These findings confirm the association of apoptosis with the encephalopathic effects of diabetes mellitus, and suggest a major role of the expression levels of Bcl-2 and Bax in the regulation of apoptotic cell death. All of the results suggest that aucubin could effectively inhibit apoptosis by modulating the expressions of Bcl-2 and Bax genes.  相似文献   

20.
摘要 目的:探讨Smac基因调控Caspase-3表达对紫杉醇耐药肺腺癌细胞株生物活性及经典凋亡信号通路的作用机制。方法:取构建好的耐药A549细胞,将其分为A549细胞(LC)组、A549细胞+Smac-NC(SN)组、A549细胞+Smac抑制剂(SI)组、A549细胞+Smac激动剂(SM)组、A549细胞+Caspase-3-NC(CN)组、A549细胞+Caspase-3抑制剂(CI)组、A549细胞+Caspase-3激动剂(CM)组、A549细胞+Smac激动剂+Caspase-3激动剂(MM)组;Real-time PCR法检测正常肺上皮细胞及4种肺腺癌细胞系中Smac、Caspase-3表达水平,将阴性对照、Smac、Caspase-3类似物转染至紫杉醇耐药肺腺癌细胞株,MTT法检测细胞增殖,流式细胞仪检测细胞凋亡,免疫印迹法检测经典凋亡信号通路表达,并分析Smac与Caspase-3的相关性。结果:肺腺癌细胞系中的Smac、Caspase-3 mRNA表达量显著低于正常肺上皮细胞系BEAS-2B(P<0.05),其中A549的Smac、Caspase-3 mRNA值最小(P<0.05),因此选取其作为此次实验细胞;LC组与SN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与SN组相比,SI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与SI组相比,SM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);LC组与CN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CN组相比,CI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与CI组相比,CM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);SM组与CM组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CM组相比,MM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);Smac与Caspase-3呈现正相关(r=0.470,P=0.002),组间具有显著差异。结论:Smac基因可显著改善紫杉醇耐药肺腺癌细胞株细胞生物活性,并激活经典凋亡信号通路,其作用机制可能与调控Caspase-3表达有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号