首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we evaluated whether Placental Mesenchymal Stromal Cells (PDMSCs) derived from normal and Preeclamptic (PE) placentae presented differences in the expression of G1/S-phase regulators p16INK4A, p18INK4C, CDK4 and CDK6. Finally, we investigated normal and PE-PDMSCs paracrine effects on JunB, Cyclin D1, p16INK4A, p18INK4C, CDK4 and CDK6 expressions in physiological term villous explants.

PDMSCs were isolated from physiological (n = 20) and PE (n = 24) placentae. Passage three normal and PE-PDMSC and conditioned media (CM) were collected after 48h. Physiological villous explants (n = 60) were treated for 72h with normal or PE-PDMSCs CM. Explants viability was assessed by Lactate Dehydrogenase Cytotoxicity assay. Cyclin D1 localization was evaluated by Immuofluorescence (IF) while JunB, Cyclin-D1 p16INK4A, p18INK4C, CDK4 and CDK6 levels were assessed by Real Time PCR and Western Blot assay.

We reported significantly increased p16INK4A and p18INK4C expression in PE- relative to normal PDMSCs while no differences in CDK4 and CDK6 levels were detected. Explants viability was not affected by normal or PE-PDMSCs CM. Normal PDMSCs CM increased JunB, p16INK4 and p18INK4C and decreased Cyclin-D1 in placental tissues. In contrast, PE-PDMSCs CM induced JunB downregulation and Cyclin D1 increase in placental explants. Cyclin D1 IF staining showed that CM treatment targeted mainly the syncytiotrophoblast.

We showed Cyclin D1-p16INK4A/p18INK4C altered pathway in PE-PDMSCs demonstrating an aberrant G1/S phase transition in these pathological cells. The abnormal Cyclin D1-p16INK4A/p18INK4C expression in explants conditioned by PE-PDMSCs media suggest a key contribution of mesenchymal cells to the altered trophoblast cell cycle regulation typical of PE pregnancies with fetal-placental compromise.  相似文献   


2.
3.
Ling Li  Jing Zhang  Huahe Gao 《Biomarkers》2018,23(6):597-602
Purpose: Nestin is expressed in various tissues of the embryo in patients with placenta previa, while the regulatory mechanism still unknown.

Materials and methods: All participants terminated pregnancy. Among them, 75 patients with placenta previa were assigned to the case group and 80 healthy pregnant women with normal placenta were assigned to the control group. Expression of nestin and CDK5 in foetal spinal cord tissues was detected by Western blot and quantitative real-time RT-PCR methods. The enzyme-linked immunosorbent assay (ELISA) was used to determine the serum expression of some pro-inflammatory cytokines in placenta previa patients. The interaction between nestin and CDK5 was evaluated by immunoprecipitation and siRNA inhibition of nestin was performed to estimate its effect on NF-κB activity in foetal spinal cord tissues.

Results: Along with increased expression of nestin and CDK5 in foetal spinal cord tissues in the case group, IL-1β, IL-6, TNF-α and IFN-γ were increased in the serum of placenta previa patients. siRNA inhibition analysis indicated that nestin interacted with CDK5 and regulated NF-κB activity in foetal spinal cord tissues.

Conclusions: Nestin is highly expressed and the interaction between nestin and CDK5 might lead to the progress of placenta previa through its regulation on NF-κB.  相似文献   


4.
Objectives: Mounting evidence has demonstrated that C-Phycocyanin (C-PC) exhibits marked antitumor activity in a wide type of tumors, such as pancreas cancer, breast carcinoma, lung cancer, and colon cancer. The current study aimed to confirm the antitumor efficacy of C-PC in esophageal squamous cell carcinoma (ESCC).

Methods: The efficacy of C-PC was evaluated against the proliferation of ESCC cell lines EC9706 and EC1 by CCK-8 kit and in a mice model of ESCC EC9706. Cell cycle and apoptosis were investigated by flow cytometry, and cell invasion was determined via transwell chamber. Protein expression was examined by Western blots.

Results: We found that C-PC exhibited anti-proliferation ability in a time-dependent manner and a dose-dependent manner in ESCC EC9706 and EC1 cells. Besides, C-PC markedly arrested cell cycle in the G0/G1 phase, induced cell apoptosis and suppressed cell invasion ability in both EC9706 and EC1 cells (p?<?.01). Notably, C-PC evoked the elevations of Bax, PARP, and cleaved-caspase-3 protein, but reduced cyclin D1, CDK4, Bcl-2, MMP-2, and MMP-9 expression levels. Further investigation from in vivo experiment revealed that C-PC displayed significant antitumor efficacy in the xenografted EC9706 model.

Conclusions: Our data presented herein suggest C-PC exerts antitumor efficacy in ESCC.  相似文献   


5.
Our previous work has reported an anti-proliferative compound from moutan cortex, paeoniflorigenone which can induce cancer-selective apoptosis. However, its anti-proliferative mechanism is still unknown. According to morphology changes (hypertrophy and flattening), we hypothesized that PFG can induce senescence or inhibit cell mitosis. Here we show that PFG can induce cellular senescence, evidenced by the expression of senescence-associated β-galactosidase, G0/G1 cell cycle arrest and permanent loss of proliferative ability, in normal TIG-1 diploid fibroblast but not cancerous HeLa cells. In cancerous HeLa cells, PFG inhibited proliferation by inducing S and G2/M cell cycle arrest and mitosis inhibition. DNA damage response was activated by PFG, interestingly the reactive oxygen species level was suppressed instead of escalated. To sum up, we report 3 new roles of PFG as, 1. inducer of premature senescence in normal TIG-1 cells, 2. inhibitor of mitosis in cancerous HeLa cells, 3. ROS scavenger.

Abbreviations: PFG: Paeoniflorigenone; ROS: reactive oxygen species; ATM: ataxia telangiectasia mutated; t-BHP: tert-butyl hydroperoxide; SA-β-gal: senescence-associatedβ-galactosidase; DNA-PKcs: DNA-dependent protein kinase; γ-H2AX: H2AX phosphoryla-tion at Ser-139  相似文献   


6.
Objectives: Notch1 regulates tumor biology in a complex, context-dependent manner. The roles of Notch1 in tongue cancer are still controversial. The aim of this study is to investigate the roles of Notch1 in tongue cancer.

Materials and Methods: The expression of Notch1 was tested between tongue cancer and normal samples by using immunohistochemistry. Tongue cancer cells were transfected with siRNA or plasmid, respectively. Cell proliferation, apoptosis, migration and invasion ability were tested in appropriate ways. The subcutaneous tumor model was established to observe the tumor growth.

Results: Notch1 was upregulated in tongue carcinoma tissues and the expression of Notch1 was related with tumor stage and differentiation. Overexpression of Notch1 could increase tongue cancer cells proliferation, invasion and migration. But inhibited the expression of Notch1 could decrease cells proliferation, invasion and migration and promote cell apoptosis in vitro and in vivo.

Conclusion: Our results prove that the oncogenic role of Notch1 in tongue cancer and provide the direction of targeted therapy of tongue cancer.  相似文献   


7.
Objectives: This study aims to explore the effect of bone marrow mesenchymal stem cells (BMSCs) on multiple myeloma (MM) development and the underlying mechanism.

Materials and Methods: BMSCs from C57BL/6 J mice were isolated and the third passage was used for subsequent experiments. Additionally, a series of in vitro transwell coculture assays were performed to explore the effects of BMSCs on the proliferation of MM cells 5TGM1 and CD4+ T cells. Furthermore, a 5TGM1-induced MM mice model was established. Moreover, PD-L1 shRNA was transfected into BMSCs to investigate whether PD-1/PD-L1 pathway involved in BMSCs-mediated regulation of T cells and MM growth.

Results: Data revealed that BMSCs significantly promoted 5TGM1 proliferation in a dose-dependent manner. Furthermore, BMSCs administration exerted stimulatory effects on MM development in terms of shortening the mouse survival rate, promoting tumor growth, and enhancing inflammatory infiltration in the MM model mice. Moreover, BMSCs decreased the percentage of Th1 and Th17 cells, whereas increased that of Th2 and Treg cells. Their corresponding cytokines of these T cell subsets showed similar alteration in the presence of BMSCs. Additionally, BMSCs significantly suppressed CD4+ T cell proliferation. We also found that PD-L1 shRNA inhibited 5TGM1 proliferation likely through activation of CD4+ T cells. Further in vivo experiments confirmed that PD-L1 inhibition attenuated BMSCs-induced MM growth, inflammation infiltration and imbalance of Th1/Th2 and Th17/Treg.

Conclusion: In summary, our findings demonstrated that BMSCs promoted cell proliferation of MM through inhibiting T cell immune responses via PD-1/PD-L1 pathway.  相似文献   


8.
Esophageal squamous cell carcinoma (ESCC) is a serious malignancy with limited options for targeted therapy. The exploration of novel targeted therapies for combating ESCC is urgently needed. Cyclin-dependent kinases (CDKs) play important roles in the progression of cancers; however, the function of CDK11p110 (cyclin-dependent kinase 11p110) in ESCC is still unknown. Here, we investigated the effects and molecular mechanisms of CDK11p110 in the proliferation and growth of ESCC by examining the expression of CDK11p110 in ESCC tissues and by detecting phenotypic changes in ESCC cells after CDK11p110 knockdown or overexpression in vitro and in vivo. According to the tissue microarray analysis, compared with its expression level in normal tissues, the expression level of CDK11p110 was significantly elevated in ESCC tissues; this result was in concordance with the data in TCGA (The Cancer Genome Atlas) datasets. In addition, RNAi-mediated CDK11p110 silencing exerted a substantial inhibitory effect on the proliferation, clonogenicity and migration ability of ESCC cells. Further study indicated that CDK11p110 knockdown arrested ESCC cells in the G2/M phase of the cell cycle and induced cell apoptosis. Moreover, stable shRNA-mediated CDK11p110 knockdown inhibited tumor growth in an ESCC xenograft model, and overexpression of CDK11p110 enhanced tumor growth. In addition, the Ki67 proliferation index was closely associated with the elevation or depletion of CDK11p110 in vivo. In summary, this study provides evidence that CDK11p110 play a critical role in the tumorigenicity of ESCC cells, which suggests that CDK11p110 may be a promising therapeutic target in ESCC.

Abbreviations: CDKs: cyclin-dependent kinases; CDK11: Cyclin-dependent kinase 11; CDK11p110: Cyclin-dependent kinase 11p110, the larger isomer of cyclin-dependent kinase 11; ESCC: esophageal squamous cell carcinoma; FACS: fluorescence-activated cell sorting; FDA: the Food and Drug Administration; TCGA: The Cancer Genome Atlas; TMA: tissue microarray.  相似文献   


9.
Context: The metabolic function of peroxisome proliferator-activated receptor gamma (PPARγ) in lung cancer remains unclear.

Objectives: To determine the relationship of PPARγ on ALDH1A3-induced lipid peroxidation to inhibit lung cancer cell growth.

Materials and methods: In silico analysis using microarray dataset was performed to screen the positive correlation between PPARγ and all ALDH isoforms. NUBIscan software and ChIP assay were used to identify the binding sites (BSs) of PPARγ on ALDH1A3 promoter. The expression of ALDH1A3 under thiazolidinedione (TZD) treatment was evaluated by QPCR and Western Blot in HBEC and H1993 cell lines. Upon treatment of TZD, colony formation assay was used to check cell growth inhibition and 4-hydroxy-2-nonenal (4HNE) production as lipid peroxidation marker was determined by Western Blot in PPARγ positive cell H1993 and PPARγ negative cell H1299.

Results: Compared to other ALDH isoforms, ALDH1A3 showed the highest positive correlation to PPARγ expression. ALDH1A3 upregulated PPARγ expression while PPARγ activation suppressed ALDH1A3. Among 2 potential screened PPARγ response elements, BS 1 and 2 in the promoter of ALDH1A3 gene, PPARγ bound directly to BS2. Ligand activation of PPARγ suppressed mRNA and protein expression of ALDH1A3. Growth inhibition was observed in H1993 (PPARγ positive cell) treated with PPARγ activator and ALDH inhibitor compared to H1299 (PPARγ negative cell). PPARγ activation increased 4HNE which is known to be suppressed by ALDH1A3.

Conclusions: ALDH1A3 suppression could be one of PPARγ tumor suppressive function. This study provides a better understanding of the role of PPARγ in lung cancer.  相似文献   


10.
Objective: We studied the modulatory effects of homocysteine pre-treatment on the disulfide reduction capacity of tumor and endothelial cells.

Methods: Human MDA-MB-231 breast carcinoma and bovine aorta endothelial cells were pre-treated for 1–24 hours with 0.5–5 mM homocysteine or homocysteine thiolactone. After washing to eliminate any rest of homocysteine or homocysteine thiolactone, cell redox capacity was determined by using a method for measuring disulfide reduction.

Results: Homocysteine pre-treatments for 1–4 hours at a concentration of 0.5–5 mM increase the disulfide reduction capacity of both tumor and endothelial cells. This effect cannot be fully mimicked by either cysteine or homocysteine thiolactone pre-treatments of tumor cells.

Discussion: Taken together, our data suggest that homocysteine can behave as an anti-oxidant agent by increasing the anti-oxidant capacity of tumor and endothelial cells.  相似文献   


11.
Introduction: Despite extreme genetic heterogeneity, tumors often show similar alterations in the expression, stability, and activation of proteins important in oncogenic signaling pathways. Thus, classifying tumor samples according to shared proteomic features may help facilitate the identification of cancer subtypes predictive of therapeutic responses and prognostic for patient outcomes. Meanwhile, understanding mechanisms of intrinsic and acquired resistance to anti-cancer therapies at the protein level may prove crucial to devising reversal strategies.

Areas covered: Herein, we review recent advances in quantitative proteomic technology and their applications in studies to identify intrinsic tumor subtypes of various tumors, to illuminate mechanistic aspects of pharmacological and oncogenic adaptations, and to highlight interaction targets for anti-cancer compounds and cancer-addicted proteins.

Expert commentary: Quantitative proteomic technologies are being successfully employed to classify tumor samples into distinct intrinsic subtypes, to improve existing DNA/RNA based classification methods, and to evaluate the activation status of key signaling pathways.  相似文献   


12.
13.
14.
15.
Objective: We present evidence that nitrite and nitrosothiols, nitrosoamines and non-heme dinitrosyl iron complexes can reversibly inhibit catalase with equal effectiveness.

Methods: Catalase activity was evaluated by the permanganatometric and calorimetric assays.

Results: This inhibition is not the result of chemical transformations of these compounds to a single inhibitor, as well as it is not the result of NO release from these substances (as NO traps have no effect on the extent of inhibition). It was found that chloride and bromide in concentration above 80 mM and thiocyanate in concentration above 20 μM enhance catalase inhibition by nitrite and the nitroso compounds more than 100 times. The inhibition degree in this case is comparable with that induced by azide.

Discussion: We propose that the direct catalase inhibitor is a positively charged NO-group. This group acquires a positive charge in the active center of enzyme by interaction of nitrite or nitroso compounds with some enzyme groups. Halides and thiocyanate protect the NO+ group from hydration and thus increase its inhibition effect. It is probable that a comparatively low chloride concentration in many cells is the main factor to protect catalase from inhibition by nitrite and nitroso compounds.  相似文献   


16.
17.
Background: Prolonged mitotic arrest in response to anti-cancer chemotherapeutics, such as DNA-damaging agents, induces apoptosis, mitotic catastrophe, and senescence. Disruptions in mitotic checkpoints contribute resistance to DNA-damaging agents in cancer. MAD2 has been associated with checkpoint failure and chemotherapy response. In this study, a novel splice variant of MAD2, designated MAD2γ, was identified, and its association with the DNA damage response was investigated.

Methods: Endogenous expression of MAD2γ and full-length MAD2 (MAD2α) was measured using RT-PCR in cancer cell lines, normal foreskin fibroblasts, and tumor samples collected from patients with testicular germ cell tumors (TGCTs). A plasmid expressing MAD2γ was transfected into HCT116 cells, and its intracellular localization and checkpoint function were evaluated according to immunofluorescence and mitotic index.

Results: MAD2γ was expressed in several cancer cell lines and non-cancerous fibroblasts. Ectopically expressed MAD2γ localized to the nucleus and reduced the mitotic index, suggesting checkpoint impairment. In patients with TGCTs, the overexpression of endogenous MAD2γ, but not MAD2α, was associated with resistance to cisplatin-based chemotherapy. Likewise, cisplatin induced the overexpression of endogenous MAD2γ, but not MAD2α, in HCT116 cells.

Conclusions: Overexpression of MAD2γ may play a role in checkpoint disruption and is associated with resistance to cisplatin-based chemotherapy in TGCTs.  相似文献   


18.
Purpose: The transforming growth factor-beta (TGF-β) pathway is an important in the initiation and progression of cancer. Due to a strong association between an elevated colorectal cancer risk and increase fecal excretion of cholest-4-en-3-one, we aim to determine the effects of cholest-4-en-3-one on TGF-β signaling in the mink lung epithelial cells (Mv1Lu) and colorectal cancer cells (HT29) in vitro.

Methods: The inhibitory effects of cholest-4-en-3-one on TGF-β-induced Smad signaling, cell growth inhibition, and the subcellular localization of TGF-β receptors were investigated in epithelial cells using a Western blot analysis, luciferase reporter assays, DNA synthesis assay, confocal microscopy, and subcellular fractionation.

Results: Cholest-4-en-3-one attenuated TGF-β signaling in Mv1Lu cells and HT29 cells, as judged by a TGF-β-specific reporter gene assay of plasminogen activator inhibitor-1 (PAI-1), Smad2/3 phosphorylation and nuclear translocation. We also discovered that cholest-4-en-3-one suppresses TGF-β responsiveness by increasing lipid raft and/or caveolae accumulation of TGF-β receptors and facilitating rapid degradation of TGF-β and thus suppressing TGF-β-induced signaling.

Conclusions: Our results suggest that cholest-4-en-3-one inhibits TGF-β signaling may be due, in part to the translocation of TGF-β receptor from non-lipid raft to lipid raft microdomain in plasma membranes. Our findings also implicate that cholest-4-en-3-one may be further explored for its potential role in colorectal cancer correlate to TGF-β deficiency.  相似文献   


19.
Objectives: Newly discovered glutathione transferase omega 1 (GSTO1-1) plays an important role in the glutathionylation cycle, a significant mechanism of protein function regulation. GSTO1-1 expression pattern has not been studied in transitional cell carcinoma (TCC), as yet.

Methods: A total of 56 TCC tumor and corresponding non-tumor specimens were investigated. Glutathione content and thioltransferase activity were measured spectrophotometrically. Protein-glutathione mixed disulfides were measured fluorimetrically. GSTO1-1 expression was determined by immunoblot and qPCR. Immunoprecipitation with GSTO1-1 antibody was followed by immunoblot using anti-GSTO1, GSTP1, c-Jun, JNK, Akt, phospho-Akt, and ASK1 antibody, while for the total S-glutathionylation levels non-reducing electrophoresis was performed.

Results: The contents of reduced glutathione and thioltransferase activity were significantly increased in tumor compared to non-tumor tissue. The increased GSTO1 expression in tumor tissue showed clear correlation with grade and stage. However, decreased total protein glutathionylation level in tumor compared to non-tumor samples was found. Immunoprecipitation has shown an association of GSTO1-1 with GSTP1, Akt, phospho-Akt, and ASK1 proteins.

Conclusions: GSTO1 deglutathionylase activity suggests its potential important role in redox perturbations present in TCC. Increased GSTO1-1 expression might contribute to TCC development and/or progression supporting the notion that GSTO1-1 may be a promising novel cancer target.  相似文献   


20.
Context: Tumor cells due to distance from capillary vessels exist in different oxygenation conditions (anoxia, hypoxia, normoxia). Changes in cell oxygenation lead to reactive oxygen species production and oxidative stress. Sigma 1 receptor (Sig1R) is postulated to be stress responding agent and superoxide dismutases (SOD1 and SOD2) are key antioxidant enzymes. It is possible that they participate in tumor cells adaptation to different concentrations of oxygen.

Objective: Evaluation of Sig1R, SOD1, and SOD2 expression in different concentrations of oxygen (1%, 10%, 21%) in colon adenocarcinoma cell lines.

Materials and methods: SW480 (primary adenocarcinoma) and SW620 (metastatic) cell lines were cultured in standard conditions in Dulbecco’s modified Eagle’s medium for 5 days, and next cultured in Hypoxic Chamber in 1% O2, 10% O2, 21% O2. Number of living cells was determined by trypan blue assay. Level of mRNA for Sig1R, SOD1, and SOD2 was determined by standard PCR method. Statistical analysis was conducted using Statistica 10.1 software.

Results: We observed significant changes in expression of Sig1R, SOD1, SOD2 due to different oxygen concentrations. ANOVA analysis revealed significant interactions between studied parameters mainly in hypoxia conditions in SW480 cells and between Sig1R and SOD2 in SW620 cells. It also showed that changes in expression of studied proteins depend significantly on type of the cell line.

Conclusion: Changes of Sig1R and SOD2 expression point to mitochondria as main organelle responsible for survival of tumor cells exposed to hypoxia or oxidative stress. Studied proteins are involved in intracellular response to stress related with different concentrations of oxygen.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号