首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

2.
Familial cholangiopathies are rare but potentially severe diseases. Their spectrum ranges from fairly benign conditions as, for example, benign recurrent intrahepatic cholestasis to low-phospholipid associated cholelithiasis and progressive familial intrahepatic cholestasis (PFIC). Many cholangiopathies such as primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC) affect first the bile ducts (“ascending pathophysiology”) but others, such as PFIC, start upstream in hepatocytes and cause progressive damage “descending” down the biliary tree and leading to end-stage liver disease. In recent years our understanding of cholestatic diseases has improved, since we have been able to pinpoint numerous disease-causing mutations that cause familial cholangiopathies. Accordingly, six PFIC subtypes (PFIC type 1–6) have now been defined. Given the availability of genotyping resources, these findings can be introduced in the diagnostic work-up of patients with peculiar cholestasis. In addition, functional studies have defined the pathophysiological consequences of some of the detected variants. Furthermore, ABCB4 variants do not only cause PFIC type 3 but confer an increased risk for chronic liver disease in general. In the near future these findings will serve to develop new therapeutic strategies for patients with liver diseases. Here we present the latest data on the genetic background of familial cholangiopathies and discuss their application in clinical practice for the differential diagnosis of cholestasis of unknown aetiology. As look in the future we present “system genetics” as a novel experimental tool for the study of cholangiopathies and disease-modifying genes. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

3.
4.
The liver is a vital organ with distinctive anatomy, histology and heterogeneous cell populations. These characteristics are of particular importance in maintaining immune homeostasis within the liver microenvironments, notably the biliary tree. Cholangiocytes are the first line of defense of the biliary tree against foreign substances, and are equipped to participate through various immunological pathways. Indeed, cholangiocytes protect against pathogens by TLRs-related signaling; maintain tolerance by expression of IRAK-M and PPARγ; limit immune response by inducing apoptosis of leukocytes; present antigen by expressing human leukocyte antigen molecules and costimulatory molecules; recruit leukocytes to the target site by expressing cytokines and chemokines. However, breach of tolerance in the biliary tree results in various cholangiopathies, exemplified by primary biliary cholangitis, primary sclerosing cholangitis and biliary atresia. Lessons learned from immune tolerance of the biliary tree will provide the basis for the development of effective therapeutic approaches against autoimmune biliary tract diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

5.

Background

Due to significant limitations to the access to orthotropic liver transplantation, cell therapies for liver diseases have gained large interest worldwide.

Scope of review

To revise current literature dealing with cell therapy for liver diseases. We discussed the advantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying the potential benefits of transplantation of human biliary tree stem cells (hBTSCs).

Major conclusions

Transplantation of adult hepatocytes showed transient benefits but requires immune-suppression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hematopoietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes but rather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adult liver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liver disease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markers in (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. In the first cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse event but significant benefits.

General significance

The biliary tree stem cell could represent the ideal cell source for the cell therapy of liver diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

6.

Background & Aim

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in both adult and children. Currently there are no reliable methods to determine disease severity, monitor disease progression, or efficacy of therapy, other than an invasive liver biopsy.

Design

Choline Deficient L-Amino Acid (CDAA) and high fat diets were used as physiologically relevant mouse models of NAFLD. Circulating extracellular vesicles were isolated, fully characterized by proteomics and molecular analyses and compared to control groups. Liver-related microRNAs were isolated from purified extracellular vesicles and liver specimens.

Results

We observed statistically significant differences in the level of extracellular vesicles (EVs) in liver and blood between two control groups and NAFLD animals. Time-course studies showed that EV levels increase early during disease development and reflect changes in liver histolopathology. EV levels correlated with hepatocyte cell death (r2 = 0.64, p<0.05), fibrosis (r2 = 0.66, p<0.05) and pathological angiogenesis (r2 = 0.71, p<0.05). Extensive characterization of blood EVs identified both microparticles (MPs) and exosomes (EXO) present in blood of NAFLD animals. Proteomic analysis of blood EVs detected various differentially expressed proteins in NAFLD versus control animals. Moreover, unsupervised hierarchical clustering identified a signature that allowed for discrimination between NAFLD and controls. Finally, the liver appears to be an important source of circulating EVs in NAFLD animals as evidenced by the enrichment in blood with miR-122 and 192 - two microRNAs previously described in chronic liver diseases, coupled with a corresponding decrease in expression of these microRNAs in the liver.

Conclusions

These findings suggest a potential for using specific circulating EVs as sensitive and specific biomarkers for the noninvasive diagnosis and monitoring of NAFLD.  相似文献   

7.
The most studied physiological function of biliary epithelial cells (cholangiocytes) is to regulate bile flow and composition, in particular the hydration and alkalinity of the primary bile secreted by hepatocytes. After almost three decades of studies it is now become clear that cholangiocytes are also involved in epithelial innate immunity, in inflammation, and in the reparative processes in response to liver damage. An increasing number of evidence highlights the ability of cholangiocyte to undergo changes in phenotype and function in response to liver damage. By participating actively to the immune and inflammatory responses, cholangiocytes represent a first defense line against liver injury from different causes. Indeed, cholangiocytes express a number of receptors able to recognize pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), such as Toll-like receptors (TLR), which modulate their pro-inflammatory behavior. Cholangiocytes can be both the targets and the initiators of the inflammatory process. Derangements of the signals controlling these mechanisms are at the basis of the pathogenesis of different cholangiopathies, both hereditary and acquired, such as cystic fibrosis-related liver disease and sclerosing cholangitis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

8.

Background

Besides its influence on survival, growth, proliferation, invasion and metastasis, cancer cell metabolism also greatly influences the cellular responses to molecular-targeted therapies.

Scope of the review

To review the recent advances in elucidating the metabolic effects of BRAF and MEK inhibitors (clinical inhibitors of the MAPK/ERK pathway) in melanoma and discuss the underlying mechanisms involved in the way metabolism can influence melanoma cell death and resistance to BRAF and MEK inhibitors. We also underlined the therapeutic perspectives in terms of innovative drug combinations.

Major conclusion

BRAF and MEK inhibitors inhibit aerobic glycolysis and induce high levels of metabolic stress leading to effective cell death by apoptosis in BRAF-mutated cancer cells. An increase in mitochondrial metabolism is required to survive to MAPK/ERK pathway inhibitors and the sub-population of cells that survives to these inhibitors are characterized by mitochondrial OXPHOS phenotype. Consequently, mitochondrial inhibition could be combined with oncogenic “drivers” inhibitors of the MAPK/ERK pathway for improving the efficacy of molecular-targeted therapy.

General significance

Metabolism is a key component of the melanoma response to BRAF and/or MEK inhibitors. Mitochondrial targeting may offer novel therapeutic approaches to overwhelm the mitochondrial addiction that limits the efficacy of BRAF and/or MEK inhibitors. These therapeutic approaches might be quickly applicable to the clinical situation.  相似文献   

9.

Background

Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization of protein interactions.

Methods

Here, we have used an integrated biochemical-biophysical approach to determine whether S-palmitoylation contributes to the regulation of extracellular vesicle production in skeletal muscle cells.

Results

We ascertained that Alix is S-palmitoylated and that this post-translational modification influences its protein-protein interaction with CD9, a member of the tetraspanin protein family. Furthermore, we showed that the structural organization of the lipid bilayer of the small (nano-sized) extracellular vesicle membrane with altered palmitoylation is qualitatively different compared to mock control vesicles.

Conclusions

We propose that S-palmitoylation regulates the function of Alix in facilitating the interactions among extracellular vesicle-specific regulators and maintains the proper structural organization of exosome-like extracellular vesicle membranes.

General Significance

Beyond its biological relevance, our study also provides the means for a comprehensive structural characterization of EVs.  相似文献   

10.

Background

Tumor microenvironment is composed of a largely altered extracellular matrix with different cell types. The complex interplay between macrophages and tumor cells through several soluble factors and signaling is an important factor in breast cancer progression.

Methods

We have extended our earlier studies on monocyte and macrophage conditioned medium (M?CM) and have carried out proteomic analysis to identify its constituents as well as validation. The 8-gene signature identified through macrophage-breast cancer cell interactions was queried in cBioportal for bioinformatic analyses.

Results

Proteomic analysis (MALDI-TOF and LC-MS/MS) revealed integrin and matrix metalloproteinases in M?CM which activated TGF-β1, IL-6, TGF- βRII and EGFR as well as its downstream STAT and SMAD signaling in breast cancer cells. Neutralization of pro-inflammatory cytokines (TNF-α. Il-1β, IL-6) abrogated the M?CM induced migration but invasion to lesser extent. The 8- gene signature identified by macrophage-tumor interactions (TNF-α, IL-1β, IL-6, MMP1, MMP9, TGF-β1, TGF-βRII, EGFR) significantly co-occurred with TP53 mutation, WTAPP1 deletion and SLC12A5 amplification along with differential expression of PSAT1 and ESR1 at the mRNA level and TPD52and PRKCD at the protein level in TCGA (cBioportal). Together these genes form a novel 15 gene signature which is altered in 63.6% of TCGA (1105 samples) data and was associated with high risk and poor survival (p < 0.05) in many breast cancer datasets (SurvExpress).

Conclusions

These results highlight the importance of macrophage signaling in breast cancer and the prognostic role of the15-gene signature.

General significance

Our study may facilitate novel prognostic markers based on tumor-macrophage interaction.  相似文献   

11.

Background

An iron-overloaded state has been reported to be associated with insulin resistance. On the other hand, conditions such as classical hemochromatosis (where iron overload occurs primarily in the liver) have been reported to be associated with increased insulin sensitivity. The reasons for these contradictory findings are unclear. In this context, the effects of increased intracellular iron per se on insulin signaling in hepatocytes are not known.

Methods

Mouse primary hepatocytes were loaded with iron in vitro by incubation with ferric ammonium citrate (FAC). Intracellular events related to insulin signaling, as well as changes in gene expression and hepatocyte glucose production (HGP), were studied in the presence and absence of insulin and/or forskolin (a glucagon mimetic).

Results

In vitro iron-loading of hepatocytes resulted in phosphorylation-mediated activation of Akt and AMP-activated protein kinase. This was associated with decreased basal and forskolin-stimulated HGP. Iron attenuated forskolin-mediated induction of the key gluconeogenic enzyme, glucose-6-phosphatase. It also attenuated activation of the Akt pathway in response to insulin, which was associated with decreased protein levels of insulin receptor substrates 1 and 2, constituting insulin resistance.

Conclusions

Increased intracellular iron has dual effects on insulin sensitivity in hepatocytes. It increased basal activation of the Akt pathway, but decreased activation of this pathway in response to insulin.

General significance

These findings may help explain why both insulin resistance and increased sensitivity have been observed in iron-overloaded states. They are of relevance to a variety of disease conditions characterized by hepatic iron overload and increased risk of diabetes.  相似文献   

12.

Background

Methylmercury (CH3Hg+) toxicity is characterized by challenging conundrums: 1) “selenium (Se)-protective” effects, 2) undefined biochemical mechanism/s of toxicity, 3) brain-specific oxidative damage, 4) fetal vulnerability, and 5) its latency effect. The “protective effects of Se” against CH3Hg+ toxicity were first recognized >50?years ago, but awareness of Se's vital functions in the brain has transformed understanding of CH3Hg+ biochemical mechanisms. Mercury's affinity for Se is ~1 million times greater than its affinity for sulfur, revealing it as the primary target of CH3Hg+ toxicity.

Scope of review

This focused review examined research literature regarding distinctive characteristics of CH3Hg+ toxicity to identify Se-dependent aspects of its biochemical mechanisms and effects.

Conclusions

Research indicates that CH3Hg+ irreversibly inhibits the selenoenzymes that normally prevent/reverse oxidative damage in the brain. Unless supplemental Se is provided, consequences increase as CH3Hg+ approaches/exceeds equimolar stoichiometries with Se, thus forming HgSe and inducing a conditioned Se deficiency. As the biochemical target of CH3Hg+ toxicity, Se-physiology provides perspectives on the brain specificity of its oxidative damage, accentuated fetal vulnerability, and latency. This review reconsiders the concept that Se is a “tonic” that protects against CH3Hg+ toxicity and recognizes Se's role as Hg's molecular “target”. As the most potent intracellular nucleophile, the selenoenzyme inhibition paradigm has broad implications in toxicology, including resolution of conundrums of CH3Hg+ toxicity.

General significance

Mercury-dependent sequestration of selenium and the irreversible inhibition of selenoenzymes, especially those required to prevent and reverse oxidative damage in the brain, are primarily responsible for the characteristic effects of mercury toxicity.  相似文献   

13.

Background

Autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis represent the three major autoimmune liver diseases (AILDs). Their management is highly specialized, requires a multidisciplinary approach and often relies on expensive, orphan drugs. Unfortunately, their treatment is often unsatisfactory, and the care pathway heterogeneous across different centers. Disease-specific clinical outcome indicators (COIs) able to evaluate the whole cycle of care are needed to assist both clinicians and administrators in improving quality and value of care. Aim of our study was to generate a set of COIs for the three AILDs. We then prospectively validated these indicators based on a series of consecutive patients recruited at three tertiary clinical centers in Lombardy, Italy.

Methods

In phase I using a Delphi method and a RAND 9-point appropriateness scale a set of COIs was generated. In phase II the indicators were applied in a real-life dataset.

Results

Two-hundred fourteen patients were enrolled and followed-up for a median time of 54 months and the above COIs were recorded using a web-based electronic medical record program. The COIs were easy to collect in the clinical practice environment and their values compared well with the available natural history studies.

Conclusions

We have generated a comprehensive set of COIs which sequentially capture different clinical outcome of the three AILDs explored. These indicators represent a critical tool to implement a value-based approach to patients with these conditions, to monitor, compare and improve quality through benchmarking of clinical performance and to assess the significance of novel drugs and technologies. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

14.

Background

HSP27 plays a role in various diseases, including neurodegenerative diseases, ischemia, and atherosclerosis. It is particularly important in the regulation of the development, progression and metastasis of cancer as well as cell apoptosis and drug resistance. However, the absence of an ATP binding domain, that is, instead, present in other HSPs such as HSP90 and HSP70, hampers the development of small molecules as inhibitors of HSP27.

Methods

Knockout cell lines generated by Crispr/Cas9 gene editing tool, specific kinase inhibitors and siRNA transfections were exploited to demonstrate that the expression of HSP27 is dependent on the integrity/activity of protein kinase CK2 holoenzyme. The interaction between these proteins has been confirmed by co-immunoprecipitation, confocal immunofluorescence microscopy, and by density gradient separation of protein complexes. Finally, using a proliferation assay this study demonstrates the potential efficacy of a combinatory therapy of heath shock and CK2 inhibitors in cancer treatment.

Results

Our data demonstrate that CK2 is able to regulate HSP27 turnover by affecting the expression of its ubiquitin ligase SMURF2 (Smad ubiquitination regulatory factor 2). Moreover, for the first time we show an increased sensitivity of CK2-inhibited tumour cells to hyperthermia treatment.

Conclusion

Being HSP27 involved in several pathological conditions, including protein conformational diseases (i.e Cystic Fibrosis) and cancer, the need of drugs to modulate its activity is growing and CK2-targeting could represent a new strategy to reduce cellular HSP27 level.

General significance

This study identifies CK2 as a molecular target to control HSP27 cellular expression.  相似文献   

15.

Background & aims

TGFβ superfamily member Activin-A is a multifunctional hormone/cytokine expressed in multiple tissues and cells, where it regulates cellular differentiation, proliferation, inflammation and tissue architecture. High activin-A levels have been reported in alcoholic cirrhosis and non-alcoholic steatohepatitis (NASH). Our aim was to identify the cell types involved in the fibrotic processes induced by activin-A in liver and verify the liver diseases that this molecule can be found increased.

Methods

We studied the effect of activin-A on mouse primary Kupffer cells (KCs) and Hepatic Stellate cells (HSCs) and the levels of activin-A and its inhibitor follistatin in the serum of patients from a large panel of liver diseases.

Results

Activin-A is expressed by mouse hepatocytes, HSCs and Liver Sinusoid Endothelial cells but not KCs. Each cell type expresses different activin receptor combinations. HSCs are unresponsive to activin-A due to downregulation/desensitization of type-II activin receptors, while KCs respond by increasing the expression/production of TNFα και TGFβ1. In the presence of KCs or conditioned medium from activin-A treated KCs, HSCs switch to a profibrogenic phenotype, including increased collagen and αSMA expression and migratory capacity. Incubation of activin-A treated KC conditioned medium with antibodies against TNFα and TGFβ1 partially blocks its capacity to activate HSCs. Only patients with alcoholic liver diseases and NASH cirrhosis have significantly higher activin-A levels and activin-A/follistatin ratio.

Conclusions

Activin-A may induce fibrosis in NASH and alcoholic cirrhosis via activation of KCs to express pro-inflammatory molecules that promote HSC-dependent fibrogenesis and could be a target for future anti-fibrotic therapies.  相似文献   

16.

Scope

Circadian clock plays a principal role in orchestrating our daily physiology and metabolism, and their perturbation can evoke metabolic diseases such as fatty liver and insulin resistance. Nobiletin (NOB) has been demonstrated to possess antitumor and neuroprotective activities. The objective of the current study is to determine potential effects of NOB on modulating the core clock gene Bmal1 regarding ameliorating glucolipid metabolic disorders.

Results

Our results revealed that NOB partially reverse the relatively shallow daily oscillations of circadian clock genes and reset phase-shifting circadian rhythms in primary hepatocytes under metabolic disorders conditions. Importantly, NOB was found to be effective at amplifying glucose uptake via stimulating IRS-1/AKT signaling pathway, as well as blunting palmitate-induced lipogenesis in HepG2 cells via modulating AMPK-Sirt1 signaling pathway and key enzymes of de novo lipogenesis in a Bmal1-dependent manner. NOB attenuated palmitate-stimulated excessive secretions of ROS, restored the depletions of mitochondrial membrane potential, which is similar to the recovery in expressions of mitochondrial respiration complex I-IV.

Conclusion

This study is the first to provide compelling evidences that NOB prevent cellular glucolipid metabolic imbalance and mitochondrial function in a Bmal1-dependent manner. Overall, NOB may serve as a nutritional preventive strategy in recovering metabolic disorders relevant to circadian clock.  相似文献   

17.

Background

α1,6-Fucosyltransferase-deficient (Fut8?/?) mice displayed increased locomotion and schizophrenia-like behaviors. Since neuroinflammation is a common pathological change in most brain diseases, this study was focused on investigating the effects of Fut8 in microglia and astrocytes.

Methods

Brain tissues were analyzed using immunohistochemical staining. Core fucosylation and protein expression were analyzed using lectin blot and western blot, respectively. Fut8-knockout (KO) cells were established by the CRISPR/Cas9 system.

Results

The number of Iba-1 positive cells and GFAP positive cells were significantly increased in both untreated and lipopolysaccharide stimulated inflammatory conditional Fut8?/? mice by comparison with both wild-type (Fut8+/+) and hetero (Fut8+/?) mice. Stimulation with pro-inflammatory factors, such as IFN-γ and IL-6, induced expression levels of fucosylation in primary microglia and astrocytes, as well as in glial cell lines. Cell motility and iNOS expression were easily induced by IFN-γ in Fut8-KO BV-2 cells compared with wild-type (WT) cells. In a similar manner, both Fut8-KO C6 cells and primary astrocytes treated with 2-fluoro-L-fucose, a specific inhibitor for fucosylation, showed a higher response to IL-6-stimulated phospho-STAT3 signaling, compared with WT cells.

Conclusions

Core fucosylation negatively regulates the states of neuroinflammation by modulating the sensitivity of microglia and astrocytes to inflammatory mediators. The disorders of Fut8?/? mice are caused not only by neurons but also by glial cell dysfunction.

General significance

Core fucose is a novel regulator for neuroinflammation in the central nervous system.  相似文献   

18.

Background

Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine.

Scope of review

The aim of this review is to provide information on the state-of-the-art and possible applications of engineered exosomes, both for cargo and specific cell-targeting, in different pathologies related to the musculoskeletal system.

Major conclusions

The use of exosomes as therapeutic agents is rapidly evolving, different studies explore drug delivery with exosomes using different molecules, showing an enormous potential in various research fields such as oncology and regenerative medicine.

General significance

However, despite the significant progress made by the different studies carried out, currently, the use of exosomes is not a therapeutic reality for the considerable difficulties to overcome.  相似文献   

19.

Background

The milk protein αS1-casein was recently reported to induce secretion of proinflammatory cytokines via Toll-like receptor 4 (TLR4). In this study, αS1-casein was identified as binder of theTLR4 ecto domain.

Methods

IL-8 secretion after stimulation of TLR4/MD2 (myeloid differentiation factor 2)/CD14 (cluster of differentiation 14)-transfected HEK293 cells (TLR4+) and Mono Mac 6 cells (MM6) with recombinant αS1-casein, or LPS as control was monitored. Binding of αS1-casein to TLR4 was quantified by microscale thermophoresis (MST).

Results

αS1-casein induced secretion of IL-8 in TLR4+ cells and in MM6 cells with a six-times higher final IL-8 concentration in supernatants. IL-8 secretion was inhibited by intracellular TLR4-domain antagonist TAK-242 with an IC50-value of 259.6?nM, by ecto-domain TLR4 antagonistic mianserin with 10–51?μM and by anti-CD14-IgA. The binding constants (KD) of αS1-casein to the TLR4, MD2, and CD14 were 2.8?μM, 0.3?μM and 2.7?μM, respectively. Finally, αS1-casein showed a higher affinity to TLR4/MD2 (KD: 2.2?μM) compared to LPS (KD: 8.2?μM).

Conclusion

Human αS1-casein induced proinflammatory effects are dependent upon binding to the TLR4 ectodomain and the presence of CD14. αS1-casein displayed stronger TLR4 agonistic activity than LPS via a different mode of action.

General significance

Breast milk protein αS1-casein is a proinflammatory cytokine.  相似文献   

20.

Background

Spontaneous intracranial hypotension (SIH) is caused by cerebrospinal fluid (CSF) leakage. Definitive diagnosis can be difficult by clinical examinations and imaging studies.

Methods

SIH was diagnosed with the following criteria: (i) evidence of CSF leakage by cranial magnetic resonance imaging (MRI) findings of intracranial hypotension and/or low CSF opening pressure; (ii) no recent history of dural puncture. We quantified CSF proteins by ELISA or Western blotting.

Results

Comparing with non-SIH patients, SIH patients showed significant increase of brain-derived CSF glycoproteins such as lipocalin-type prostaglandin D synthase (L-PGDS), soluble protein fragments generated from amyloid precursor protein (sAPP) and “brain-type” transferrin (Tf). Serum-derived proteins such as albumin, immunoglobulin G, and serum Tf were also increased. A combination of L-PGDS and brain-type Tf differentiated SIH from non-SIH with sensitivity 94.7% and specificity 72.6%.

Conclusion

L-PGDS and brain-type Tf can be biomarkers for diagnosing SIH.

General significance

L-PGDS and brain-type Tf biosynthesized in the brain appears to be markers for abnormal metabolism of CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号