首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epithelial–mesenchymal transition (EMT) has been shown to associate with cancer stem cells and radioresistance. However, it is obscure whether EMT itself or specific EMT regulators play causal roles in these properties of salivary adenoid cystic carcinoma (SACC). Here, we exhibited that overexpression of HSP27 drove the migration and invasion, induced EMT, as well as mediated TGF‐β1‐induced EMT in SACC cells, accompanying the up‐regulation of Snail1 and Prrx1. Conversely, HSP27 silencing reduced the migration and invasion and contributed to MET of SACC cells. HSP27 indirectly down‐regulates the expression of E‐cadherin through activating Snail1 and Prrx1 expressions. Overexpression of Snail1 or Prrx1 restored the migration and invasion in HSP27 knockdown cells. Enforced expression of HSP27 enhanced colony formation, CD133+/CD44+ population and radioresistance of SACC cell lines. In addition, HSP27 expression was positively associated with radioresistance and poor prognosis of SACC patients as well as with the expression of Prrx1 or Snail1 in SACC tissues. The data confirm an important function for HSP27 in SACC progression through regulating EMT and stemness, and they imply the possible association between EMT and radioresistance of SACC.  相似文献   

2.
3.
Isoform-specific functions of Numb in the development of cancers, especially in the initiation of epithelial-to-mesenchymal transition (EMT) remains controversial. We study the specific function of Numb-PRRL isoform in activated EMT of pancreatic ductal adenocarcinoma (PC), which is distinguished from our previous studies that only focused on the total Numb protein. Numb-PRRL isoform was specifically overexpressed and silenced in PC cells combining with TGF-β1 and EGF stimulus. We systematically explored the potential effect of Numb-PRRL in the activated EMT of PC in vitro and in vivo. The total Numb protein was overexpressed in the normal pancreatic duct and well-differentiated PC by IHC. However, Numb-PRRS isoform but not Numb-PRRL showed dominant expression in PC tissues. Numb-PRRL overexpression promoted TGF-β1-induced EMT in PANC-1 and Miapaca-2 cells. TGF-β1-induced EMT-like cell morphology, cell invasion, and migration were enhanced in Numb-PRRL overexpressing groups following the increase of N-cadherin, Vimentin, Smad2/3, Snail1, Snail2, and cleaved-Notch1 and the decrease of E-cadherin. Numb-PRRL overexpression activated TGFβ1-Smad2/3-Snail1 signaling was significantly reversed by the Notch1 inhibitor RO4929097. Conversely, Numb-PRRL silencing inhibited EGF-induced EMT in AsPC-1 and BxPC-3 cells following the activation of EGFR-ERK/MAPK signaling via phosphorylating EGFR at tyrosine 1045. In vivo, Numb-PRRL overexpression or silencing promoted or inhibited subcutaneous tumor size and distant liver metastases via regulating EMT and Snail signaling, respectively. Numb-PRRL promotes TGF-β1- and EGF-induced EMT in PC by regulating TGF-β1-Smad2/3-Snail and EGF-induced EGFR-ERK/MAPK signaling.Subject terms: Tumour-suppressor proteins, Cell invasion  相似文献   

4.
5.
6.

Background

Bmi-1 had been found to involve in self renewal of stem cells and tumorigenesis in various malignancies. In this study, we investigated the role of Bmi-1 in the development of salivary adenoid cystic carcinoma (SACC).

Methods

At first, we confirmed that the deregulation of Bmi-1 was a frequent event in SACC; up-regulation of Bmi-1 was correlated with clinical stages, vital status and distant metastasis and associated with reduced overall survival and disease free survival. SACC-LM cells, higher migration and invasion abilities, elevated the expression of Bmi-1 protein, epithelial-mesenchymal transition (EMT) related proteins (Snail, Slug and Vimentin) and cancer stem cells (CSCs) related proteins (ABCG2, Notch, ALDH-1, Oct-4, Nanog and Epcam) compared to the SACC-83 cells (lower migration and invasion abilities). The migration and invasion abilities were inhibited in SACC-LM cells upon Bmi-1 knockdown. Meanwhile, Bmi-1 knockdown resulted in simultaneous loss of stem cell markers and EMT markers in SACC-LM cells.

Conclusion

Our studies confirm that Bmi-1 deregulation plays an important role in the development of SACC and contributes to the migration and the invasion abilities of SACC, which is involved in EMT and CSCs.

General significance

To our knowledge, this is the first study revealing that Bmi-1 deregulation is associated with enhanced migration, invasion and poor prognosis in salivary adenoid cystic carcinoma.  相似文献   

7.
8.
9.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

10.
EGFR is a potent stimulator of invasion and metastasis in head and neck squamous cell carcinomas (HNSCC). However, the mechanism by which EGFR may stimulate tumor cell invasion and metastasis still need to be elucidated. In this study, we showed that activation of EGFR by EGF in HNSCC cell line SCC10A enhanced cell migration and invasion, and induced loss of epitheloid phenotype in parallel with downregulation of E-cadherin and upregulation of N-cadherin and vimentin, indicating that EGFR promoted SCC10A cell migration and invasion possibly by an epithelial to mesenchymal transition (EMT)-like phenotype change. Interestingly, activation of EGFR by EGF induced production of matrix metalloproteinase-9 (MMP-9) and soluble E-cadherin (sE-cad), and knockdown of MMP-9 by siRNA inhibited sE-cad production induced by EGF in SCC10A. Moreover, both MMP-9 knockdown and E-cadherin overexpression inhibited cell migration and invasion induced by EGF in SCC10A. The results indicate that EGFR activation promoted cell migration and invasion through inducing MMP-9-mediated degradation of E-cadherin into sE-cad. Pharmacologic inhibition of EGFR, MEK, and PI3K kinase activity in SCC10A reduced phosphorylated levels of ERK-1/2 and AKT, production of MMP-9 and sE-cad, cell migration and invasion, and expressional changes of EMT markers (E-cadherin and N-cadherin) induced by EGF, indicating that EGFR activation promotes cell migration and invasion via ERK-1/2 and PI3K-regulated MMP-9/E-cadherin signaling pathways. Taken together, the data suggest that EGFR activation promotes HNSCC SCC10A cell migration and invasion by inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin into sE-cad related to activation of ERK-1/2 and PI3K signaling pathways.  相似文献   

11.
上皮间质转化(epithelial-mesenchymal transition,EMT)与肿瘤侵袭转移密切相关.虽然肝细胞生长因子(hepatocyte growth factor,HGF)已被证实为肿瘤EMT的主要诱导剂,但是HGF诱导肿瘤EMT发生的分子机制尚不完全清楚.本研究旨在探讨Snail在HGF诱导肝癌细胞上皮间质转化中的作用.用HGF处理肝癌HepG2和Hep3B细胞,显微镜观察细胞形态变化,划痕试验及Transwell试验检测细胞迁移能力,Western印迹检测Met,AKT的磷酸化及蛋白质表达的变化,Western印迹与real-time RT-PCR检测上皮细胞表面标志E-Cadherin和间质细胞表面标志N-Cadherin、Fibronectin的表达变化,以及EMT相关转录因子的表达变化.经HGF处理的HepG2、Hep3B细胞,Met和AKT的磷酸化水平显著增强;相差倒置显微镜下观察细胞形态向间质型细胞形态转化;细胞划痕和Transwell试验检测细胞的迁移能力较对照组显著增强;Real-time RT-PCR和Western印迹实验显示HGF的诱导能上调间质标记蛋白的表达及下调上皮型标志蛋白的表达.进一步发现,HGF能上调转录因子Snail的表达,干扰Snail能逆转HGF对HepG2和Hep 3B细胞EMT发生的诱导作用.由此可见,HGF可能通过诱导Snail的表达促进肝癌细胞EMT的发生.这为阐明肝癌细胞侵袭转移机制,以及肝癌的防治提供新线索.  相似文献   

12.
The activation of CXCL12/CXCR4 axis participated in the progression of multiple cancers, but potential effect in terms of perineural invasion (PNI) in SACC remained ambiguous. In this study, we identified that CXCL12 substantially expressed in nerve cells. CXCR4 strikingly expressed in tumour cells, and CXCR4 expression was closely associated with the level of EMT-associated proteins and Schwann cell hallmarks at nerve invasion frontier in SACC. Activation of CXCL12/CXCR4 axis could promote PNI and up-regulate relative genes of EMT and Schwann cell hallmarks both in vitro and in vivo, which could be inhibited by Twist silence. After overexpressing S100A4, the impaired PNI ability of SACC cells induced by Twist knockdown was significantly reversed, and pseudo foot was visualized frequently. Collectively, the results indicated that CXCL12/CXCR4 might promote PNI by provoking the tumour cell to differentiate towards Schwann-like cell through Twist/S100A4 axis in SACC.  相似文献   

13.
14.
15.
16.
Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT). Sema3E-induced EMT in ovarian endometrioid cancer cells was dependent on nuclear localization of Snail1 through activation of phosphatidylinositol-3-kinase and ERK/MAPK. RNAi-mediated knockdown of Sema3E, Plexin-D1 or Snail1 in Sema3E-expressing tumor cells resulted in compromised cell motility, concurrent reversion of EMT and diminished nuclear localization of Snail1. By contrast, forced retention of Snail1 within the nucleus of Sema3E-negative tumor cells induced EMT and enhanced cell motility. These results show that in addition to the angiogenic effects of Sema3E on tumor vascular endothelium, an EMT strategy could be exploited by Sema3E/Plexin-D1 signaling in tumor cells to promote cellular invasion/migration.  相似文献   

17.
Epithelial–mesenchymal transition (EMT) is regulated by interaction of carcinoma and stromal cells and crucial for progression of urinary bladder carcinoma (UBC). Therefore, the influence of activated fibroblasts on the expression of E-cadherin repressors as well as EMT and invasion in UBC was investigated. A correlative analysis of the immunohistochemical expression of fibroblast (ASMA, S100A4, FAP, SDF1, PDGFRβ) and EMT (Snail, Slug, Zeb1, E-cadherin) markers was performed on 49 UBC cases of different stages. The impact of distinguishable growth factor stimulated fibroblasts on invasion, EMT, and E-cadherin repressor expression was investigated in an invasion model. In situ, invasiveness was significantly correlated to the loss of membranous E-cadherin (E-cad_m) and increased Snail, Slug, Zeb1 in tumour cells, as well as to increased ASMA, S100A4, and PDGFRβ in stromal cells. A significant correlation to nodal metastasis could be evidenced for the loss of E-Cad_m, and for an increase in S100A4 and PDGFRβ. Comparison of stromal and EMT markers revealed significant correlations of ASMA to Snail and Slug; of S100A4 to the loss of E-cad_m and Zeb1; and of PDGFRβ to the loss of E-Cad_m, Slug and Zeb1. In vitro, TGFβ1 induced myofibroblasts were the strongest attractants, while aFGF or TGFβ1/aFGF stimulated fibroblasts were the most potent EMT inductors. As shown here for the first time, distinct sub-populations of fibroblasts are to various extents associated with EMT and tumour progression in UBC. These relevant findings might be the basis for the identification of new diagnostic markers and therapeutic targets selectively affecting tumour supporting CAF effects.  相似文献   

18.
The global gene regulator Special AT-rich sequence-binding protein-1 (SATB1) has been reported to induce EMT-like changes and be associated with poor clinical outcome in several cancers. This study aims to evaluate whether SATB1 affects the biological behaviors of bladder transitional cell carcinoma (BTCC) and further elucidate if this effect works through an epithelial-mesenchymal transition (EMT) pathway. The expression of SATB1, E-cadherin (epithelial markers), vimentin (mesenchymal markers) in BTCC tissues and adjacent noncancerous tissues, as well as in two cell lines of bladder cancer were investigated. Whether the SATB1 expression is associated with clinicopathological factors or not was statistically analyzed. Cell invasion and migration, cell cycle, cell proliferation and apoptosis were evaluated in SATB1 knockdown and overexpressed cell lines. Our results showed that the expression of SATB1 was remarkably up-regulated both in BTCC tissues and in bladder cancer cell lines with high potential of metastasis. The results were also associated with EMT markers and poor prognosis of BTCC patients. Moreover, SATB1 induced EMT processes through downregulation of E-cadherin, upregulation of E-cadherin repressors (Snail, Slug and vimentin). SATB1 also promoted cell cycle progression, cell proliferation, cell invasion and cell migration, but did not alter cell survival. In conclusion, our results suggest that SATB1 plays a crucial role in the progression of bladder cancer by regulating genes controlling EMT processes. Further, it may be a novel therapeutic target for aggressive bladder cancers.  相似文献   

19.
20.
The epithelial–mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号