首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermatogenesis is a highly ordered process which requires mitotic and meiotic divisions. In this work, we studied the relative changes in the levels of the two components of the M-phase promoting factor (MPF): the regulatory subunit cyclin B1 (CycB1) and its catalytic subunit cdk1, in spermatogenic cells of rats between 16 and 90 days of life. A multivariate flow cytometry analysis of forward scatter (FSC), side scatter (SSC) and DNA content was used to identify six populations of rat germ cells: spermatogonia with preleptotene spermatocytes, young pachytene spermatocytes, middle to late pachytene spermatocytes, secondary spermatocytes with doublets of round spermatids, round spermatids, and elongated spermatids. For any population studied no significant difference in the relative cellular content of CycB1 or cdk1 proteins between animals of different ages was observed. By contrast, CycB1 and cdk1 levels were different between the different populations of germ cells. CycB1 and cdk1 were rather high in young pachytene spermatocytes and culminated in late spermatocytes, i.e. just before the first meiotic division. The relative levels of the two proteins remained high in secondary spermatocytes then decreased in round spermatids at the exit of meiosis. Similar results were obtained by Western-blot analysis of total proteins obtained from lysates of elutriated fractions of spermatocytes and spermatids. MPF activity was assessed in lysates of germ cells from 32-day-old rats or adult animals using p13suc1 agarose and histone H1 as an exogenous substrate. H1 kinase activity was higher in pachytene spermatocytes than in round spermatid fractions from both adult and young rats. These results indicate that the meiotic G2/M transition is associated to high levels of CycB1 and cdk1 leading to high MPF activity irrespective of the age of the animals.  相似文献   

2.
3.
Here we describe the molecular cloning of human cyclin B3, its localization, and its structure. It is localized in the subcentromeric region of the X chromosome, still not completely sequenced by the Human Genome Project. This cyclin B3 is unusually large for a mitotic cyclin. Its mRNAs were found in all tissues and were particularly abundant in testis. At least three splice variants were found in the ORF and three variants in the 5'UTR.  相似文献   

4.
The molecular mechanisms underlying oocyte maturation in the annelid polychaetes Arenicola marina and Arenicola defodiens were investigated. In both species, a hitherto unidentified hormone triggers synchronous and rapid transition from prophase to metaphase, a maturation process which can be easily reproduced in vitro. Activation of a roscovitine- and olomoucine-sensitive M-phase-specific histone, H1 kinase, occurs during oocyte maturation. Using affinity chromatography on immobilized p9CKShs1, we purified CDK1 and cyclin B from oocyte extracts prepared from both phases and both species. In prophase, CDK1 is present both as an inactive, but Thr161-phosphorylated monomer, and as an inactive (Tyr15-phosphorylated) heterodimer with cyclin B. Prophase to metaphase transition is associated with complete tyrosine dephosphorylation of the cyclin B-associated CDK1, with phosphorylation of cyclin B, and with dramatic activation of the kinase activity of the CDK1/cyclin B complex. We propose that Arenicola oocytes may provide an ideal model system to investigate the acquisition of the ability of oocytes to be fertilized that occurs as oocyte shift from prophase to metaphase, an important physiological event, probably regulated by active CDK1/cyclin B.  相似文献   

5.
6.
Cell cycle progression is regulated by members of the cyclin-dependent kinase (CDK), Polo and Aurora families of protein kinases. The levels of expression and localization of the key regulatory kinases are themselves subject to very tight control. There is increasing evidence that crosstalk between the mitotic kinases provides for an additional level of regulation. We have previously shown that Aurora B activates Polo kinase at the centromere in mitosis, and that the interaction between Polo and the chromosomal passenger complex (CPC) component INCENP is essential in this activation. In this report, we show that Polo kinase is required for the correct localization and activity of the CPC in meiosis and mitosis. Study of the phenotype of different polo allele combinations compared to the effect of chemical inhibition revealed significant differences in the localization and activity of the CPC in diploid tissues. Our results shed new light on the mechanisms that control the activity of Aurora B in meiosis and mitosis.  相似文献   

7.
In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box-mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]-GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM-GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM-GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.  相似文献   

8.
9.
10.
Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that destabilizes cell cycle proteins, is activated by Cdh1 in post-mitotic neurons, where it regulates axonal growth, synaptic plasticity and survival. The APC/C-Cdh1 substrate, cyclin B1, has been found to accumulate in degenerating brain areas in Alzheimer's disease and stroke. This highlights the importance of elucidating cyclin B1 regulation by APC/C-Cdh1 in neurons under stress conditions relevant to neurological disease. Here, we report that stimulation of N-methyl-D-aspartate receptors (NMDARs) that occurs in neurodegenerative diseases promoted the accumulation of cyclin B1 in the nuclei of cortical neurons; this led the neurons to undergo apoptotic death. Moreover, we found that the Ser-40, Thr-121 and Ser-163 triple phosphorylation of Cdh1 by the cyclin-dependent kinase-5 (Cdk5)-p25 complex was necessary and sufficient for cyclin B1 stabilization and apoptotic death after NMDAR stimulation. These results reveal Cdh1 as a novel Cdk5 substrate that mediates cyclin B1 neuronal accumulation in excitotoxicity.  相似文献   

11.
In sea urchins, fertilization triggers a rapid rise in protein synthesis necessary for activation of CDK1/cyclin B, the universal cell cycle regulator. It has been shown that FRAP/mTOR is required for eIF4E release from the translational repressor 4E-BP, a process that occurs upstream of de novo cyclin B synthesis. Here, we investigate whether PI 3-kinase acts independently or upstream from FRAP/mTOR in the signal transduction pathway that links fertilization to the activation of the CDK1/cyclin B complex in sea urchin egg. We found that wortmannin, a potent inhibitor of PI 3-kinase, partially inhibited the global increase in protein synthesis triggered by fertilization. Furthermore, wortmannin treatment induced partial inhibition of cyclin B translation triggered by fertilization, in correlation with an intermediate effect of the drug on 4E-BP degradation and on the dissociation of the 4E-BP/eIF4E complex induced by fertilization. Our results presented here suggest that PI 3-kinase activity is required for completion of mitotic divisions of the sea urchin embryo. Incubation of eggs with wortmannin or microinjection of wortmannin or LY 294002 affects drastically mitotic divisions induced by fertilization. In addition, we found that wortmannin treatment inhibits dephosphorylation of the tyrosine inhibitory site of CDK1. Taken together, these data suggest that PI 3-kinase acts upstream of at least two independent targets that function in the CDK1/cyclin B activation triggered by fertilization of sea urchin oocytes. We discuss the significance of these results concerning the cascade of reactions that impinge upon the activation of the CDK1/cyclin B complex that follows sea urchin oocyte fertilization.  相似文献   

12.
The increasing resistance of nasopharyngeal carcinoma to irradiation makes the exploration of effective radiosensitizers necessary. Tetrandrine is known to be an antitumor drug, but little is known regarding its radiosensitization effect on nasopharyngeal carcinoma. We investigated the effect of combined treatment of irradiation and maximum non-cytotoxic doses of tetrandrine on the nasopharyngeal carcinoma cell lines CNE1 and CNE2. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were assessed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The radiosensitization of cells receiving the maximum non-cytotoxic doses of tetrandrine was assessed by evaluating cell proliferation and DNA damage repair using MTT, clonogenic, comet assays and detection of caspase-3 and phosphorylated histone H2AX (γ-H2AX). The cell cycle was assessed by flow cytometry, and protein expression was detected by western blot analysis. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were 1.5 μmol/L and 1.8 μmol/L, respectively. When cells were exposed to irradiation and the maximum non-cytotoxic doses of tetrandrine, the survival fraction was decreased. DNA damage and γ-H2AX levels markedly increased. Moreover, tetrandrine abrogated the G2/M phase arrest caused by irradiation. Combined treatment with the maximum non-cytotoxic dose of tetrandrine and irradiation caused suppression of the phosphorylation of CDK1 and CDC25C and increase in the expression of cyclin B1. The study in vivo also showed that the maximum non-cytotoxic dose of tetrandrine could reduce tumor growth in xenograft tumor model. Our results suggest that the maximum non-cytotoxic dose of tetrandrine can enhance the radiosensitivity of CNE1 and CNE2 cells and that the underlying mechanism could be associated with abrogation of radiation-induced G2/M arrest via activation of the CDC25C/CDK1/Cyclin B1 pathway.  相似文献   

13.
Male mice lacking cyclin A1 protein are sterile. Their sterility results from an arrest in the meiotic cell cycle of spermatocytes, which we now identify as occurring at late diplotene, immediately before diakinesis. The stage of arrest in cyclin A1-deficient mice is distinct from the arrest seen in spermatocytes that are deficient in its putative catalytic partner Cdk2, which occurs much earlier in pachytene. The arrest in cyclin A1-deficient spermatocytes is also accompanied by an unusual clustering of centromeric heterochromatin. Consistent with a possible defect in the centromeric region, immunofluorescent staining of cyclin A1 protein shows localization in the region of the centromere. Phosphorylation of histone H3 at serine 10 in pericentromeric heterochromatin, which normally occurs in late diplotene, is reduced in spermatocytes from heterozygous Ccna1(+/-) testes and completely absent in spermatocytes with no cyclin A1 protein. Concomitantly, the levels of pericentromeric aurora B kinase, known to phosphorylate histone H3 during meiosis, are partially reduced in spermatocytes from testes of heterozygous mice and further reduced in homozygous null spermatocytes. These data suggest a critical and concentration-dependent function for cyclin A1 in the pericentromeric region in late diplotene of meiosis, perhaps in assembly or function of the passenger protein complex.  相似文献   

14.
15.
Cyclin E, an activator of phospho-CDK2 (pCDK2), is important for cell cycle progression in metazoans and is frequently overexpressed in cancer cells. It is essential for entry to the cell cycle from G0 quiescent phase, for the assembly of prereplication complexes and for endoreduplication in megakaryotes and giant trophoblast cells. We report the crystal structure of pCDK2 in complex with a truncated cyclin E1 (residues 81-363) at 2.25 A resolution. The N-terminal cyclin box fold of cyclin E1 is similar to that of cyclin A and promotes identical changes in pCDK2 that lead to kinase activation. The C-terminal cyclin box fold shows significant differences from cyclin A. It makes additional interactions with pCDK2, especially in the region of the activation segment, and contributes to CDK2-independent binding sites of cyclin E. Kinetic analysis with model peptide substrates show a 1.6-fold increase in kcat for pCDK2/cyclin E1 (81-363) over kcat of pCDK2/cyclin E (full length) and pCDK2/cyclin A. The structural and kinetic results indicate no inherent substrate discrimination between pCDK2/cyclin E and pCDK2/cyclin A with model substrates.  相似文献   

16.
17.
18.
Mammalian eggs remain arrested at metaphase of the second meiotic division (metII) for an indeterminate time before fertilization. During this period, which can last several hours, the continued attachment of sister chromatids is thought to be achieved by inhibition of the protease separase. Separase is known to be inhibited by binding either securin or Maturation (M-Phase)-Promoting Factor, a heterodimer of CDK1/cyclin B1. However, the relative contribution of securin and CDK/cyclin B1 to sister chromatid attachment during metII arrest has not been assessed. Although there are conditions in which either CDK1/cyclinB1 activity or securin can prevent sister chromatid disjunction, principally by overexpression of non-degradable cyclin B1 or securin, we find here that separase activity is primarily regulated by securin and not CDK1/cyclin B1. Thus the CDK1 inhibitor roscovitine and an antibody we designed to block the interaction of CDK1/cyclin B1 with separase, both failed to induce sister disjunction. In contrast, securin morpholino knockdown specifically induced loss of sister attachment, that could be restored by securin cRNA rescue. During metII arrest separase appears primarily regulated by securin binding, not CDK1/cyclin B1.  相似文献   

19.
Degradation of cyclin B was effectively suppressed when cells were treated with ALLN (N-acetylleucylleucylnorleucinal) which inhibits proteasome, calpain and cysteine proteinase cathepsins. In order to examine which protease degrades cyclin B, the effect of a cathepsin inhibitor, cystatin α, was investigated. The cystatin α gene was inserted into an inducible expression vector, pMSG, and transfected into NIH3T3 mouse fibroblasts. The expression of cystatin α was induced effectively in the transfected cells after treatment with dexamethasone. Overexpression of cystatin α resulted in an increase of the amount of cyclin B, suggesting that cysteine proteinase cathepsins might be involved in the degradation of cyclin B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号