首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.  相似文献   

3.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

4.
5.
6.
A mutant of Rhizobium meliloti unable to transport C4 dicarboxylates (dct) was isolated after Tn5 mutagenesis. The mutant, 4F6, could not grow on aspartate or the tricarboxylic acid cycle intermediates succinate, fumarate, or malate. It produced symbiotically ineffective nodules on Medicago sativa in which bacteroids appeared normal, but the symbiotic zone was reduced and the plant cells contained numerous starch granules at their peripheries. Cosmids containing the dct region were obtained by selecting those which restored the ability of 4F6 to grow on succinate. The Tn5 insertion in 4F6 was found to be within a 5.9-kilobase (kb) EcoRI fragment common to the complementing cosmids. Site-specific Tn5-mutagenesis revealed dct genes in a segment of DNA about 4 kb in size extending from within the 5.9-kb EcoRI fragment into an adjacent 2.9-kb EcoRI fragment. The 4F6 mutation was found to be in a complementation group in which mutations yielded a Fix- phenotype, whereas other dct mutations in the region resulted in mutants which produced effective nodules in most, although not all, plant tests (partially Fix-). The dct region was found to be located on a megaplasmid known to carry genes required for exopolysaccharide production.  相似文献   

7.
Rhizobium leguminosarum strain RBL5523 is able to form nodules on pea, but these nodules are ineffective for nitrogen fixation. The impairment in nitrogen fixation appears to be caused by a defective infection of the host plant and is host specific for pea. A Tn5 mutant of this strain, RBL5787, is able to form effective nodules on pea. We have sequenced a 33-kb region around the phage-transductable Tn5 insertion. The Tn5 insertion was localized to the 10th gene of a putative operon of 14 genes that was called the imp (impaired in nitrogen fixation) locus. Several highly similar gene clusters of unknown function are present in Pseudomonas aeruginosa, Vibrio cholerae, Edwardsiella ictaluri, and several other animal pathogens. Homology studies indicate that several genes of the imp locus are involved in protein phosphorylation, either as a kinase or dephosphorylase, or contain a phosphoprotein-binding module called a forkhead-associated domain. Other proteins show similarity to proteins involved in type III protein secretion. Two dimensional gel electrophoretic analysis of the secreted proteins in the supernatant fluid of cultures of RBL5523 and RBL5787 showed the absence in the mutant strain of at least four proteins with molecular masses of approximately 27 kDa and pIs between 5.5 and 6.5. The production of these proteins in the wild-type strain is temperature dependent. Sequencing of two of these proteins revealed that their first 20 amino acids are identical. This sequence showed homology to that of secreted ribose binding proteins (RbsB) from Bacilus subtilis and V. cholerae. Based on this protein sequence, the corresponding gene encoding a close homologue of RbsB was cloned that contains a N-terminal signal sequence that is recognized by type I secretion systems. Inoculation of RBL5787 on pea plants in the presence of supernatant of RBL5523 caused a reduced ability of RBL5787 to nodulate pea and fix nitrogen. Boiling of this supernatant before inoculation restored the formation of effective nodules to the original values, indicating that secreted proteins are indeed responsible for the impaired phenotype. These data suggest that the imp locus is involved in the secretion to the environment of proteins, including periplasmic RbsB protein, that cause blocking of infection specifically in pea plants.  相似文献   

8.
Summary Strains of Rhizobium leguminosarum (R. l.) biovar viciae containing pss mutations fail to make the acidic exopolysaccharides (EPS) and are unable to nodulate peas. It was found that they also failed to nodulate Vicia hirsuta, another host of this biovar. When peas were co-inoculated with pss mutant derivatives of a strain of R.l. bv viciae containing a sym plasmid plus a cured strain lacking a sym plasmid (and which is thus Nod-, but for different reasons) but which makes the acidic EPS, normal numbers of nodules were formed, the majority of which failed to fix nitrogen (the occasional Fix+ nodules were pressumably induced by strains that arose as a result of genetic exchange between cells of the two inoculants in the rhizosphere). Bacteria from the Fix- nodules contained, exclusively, the strain lacking its sym plasmid. When pss mutant strains were co-inoculated with a Nod- strain with a mutation in the regulatory gene nodD (which is on the sym plasmid pRL1JI), normal numbers of Fix+ nodules were formed, all of which were occupiced solely by the nodD mutant strain. Since a mutation in nodD abolishes activation of other nod genes required for early stages of infection, these nod genes appear to be dispensable for subsequent stages in nodule development. Recombinant plasmids, containing cloned pss genes, overcame the inhibitory effects of psi, a gene which when cloned in the plasmid vector pKT230, inhibits both EPS production and nodulation ability. Determination of the sequence of the pss DNA showed that one, or perhaps two, genes are required for correcting strains that either carry pss mutations or contain multi-copy psi. The predicted polypeptide product of one of the pss genes had a hydrophobic aminoterminal region, suggesting that it may be located in the membrane. Since the psi gene product may also be associated with the bacterial membrane, the products of psi and pss may interact with each other.  相似文献   

9.
The region of the Rhizobium leguminosarum plasmid pRL1JI involved in nodulation and nitrogen fixation has been cloned on a series of four overlapping cosmid clones. These clones represent ˜60 kb of pRL1JI DNA on which a series of Tn5-induced fix and nod alleles have been identified, with the two most distant alleles being separated by ˜45 kb of DNA. The mutant alleles fell into three groups, two clusters of fix alleles separated by one cluster of nod alleles. Within one group of fix alleles, DNA homologous to the nifA gene of Klebsiella pneumoniae has been identified, whereas the pRL1JI DNA homologous to the K. pneumoniae nitrogenase genes is present within the other group of fix alleles.  相似文献   

10.
Rhizobium trifolii T37 contains at least three plasmids with sizes of greater than 250 megadaltons. Southern blots of agarose gels of these plasmids probed with Rhizobium meliloti nif DNA indicated that the smallest plasmid, pRtT37a, contains the nif genes. Transfer of the Rhizobium leguminosarum plasmid pJB5JI, which codes for pea nodulation and the nif genes and is genetically marked with Tn5, into R. trifolii T37 generated transconjugants containing a variety of plasmid profiles. The plasmid profiles and symbiotic properties of all of the transconjugants were stably maintained even after reisolation from nodules. The transconjugant strains were placed into three groups based on their plasmid profiles and symbiotic properties. The first group harbored a plasmid similar in size to pJB5JI (130 megadaltons) and lacked a plasmid corresponding to pRtT37a. These strains formed effective nodules on peas but were unable to nodulate clover and lacked the R. trifolii nif genes. This suggests that genes essential for clover nodulation as well as the R. trifolii nif genes are located on pRtT37a and have been deleted. The second group harbored hybrid plasmids formed from pRtT37a and pJB5JI which ranged in size from 140 to ca. 250 megadaltons. These transconjugants had lost the R. leguminosarum nif genes but retained the R. trifolii nif genes. Strains in this group nodulated both peas and clover but formed effective nodules only on clover. The third group of transconjugants contained a hybrid plasmid similar in size to pRtT37b. These strains contained the R. trifolii and R. leguminosarum nif genes and formed N2-fixing nodules on both peas and clover.  相似文献   

11.
Mutants of Rhizobium leguminosarum bv. viciae unable to respire via the cytochrome aa3 pathway were identified by the inability to oxidize N,N'-dimethyl-p-phenylenediamine. Two mutants which were complemented by cosmid pIJ1942 from an R. leguminosarum clone bank were identified. Although pea nodules induced by these mutants contained many bacteroids, no symbiotic nitrogen fixation was detected. Heme staining of cellular proteins revealed that all cytochrome c-type heme proteins were absent. These mutants lacked spectroscopically detectable cytochrome c, but cytochromes aa3 and d were present, the latter at a higher-than-normal level. DNA sequence analysis of complementing plasmids revealed four apparently cotranscribed open reading frames (cycH, cycJ, cycK, and cycL). CycH, CycJ, CycK, and CycL are homologous to Bradyrhizobium japonicum and Rhizobium meliloti proteins thought to be involved in the attachment of heme to cytochrome c apoproteins; CycK and CycL are also homologous to the Rhodobacter capsulatus ccl1 and ccl2 gene products and the Escherichia coli nrfE and nrfF gene products involved in the assembly of c-type cytochromes. The absence of cytochrome c heme proteins in these R. leguminosarum mutants is consistent with the view that the cycHJKL operon could be involved in the attachment of heme to apocytochrome c.  相似文献   

12.
A 3.2kb fragment of DNA cloned from Rhizobium leguminosarum has been shown to contain the genes necessary for the induction of root hair curling, the first observed step in the infection of leguminous plants by R. leguminosarum. The DNA sequence of this region has been determined and three open reading frames were identified: genes corresponding to these open reading frames have been called nodA, nodB and nodC and are transcribed in that order. Mutations within the nodC gene completely blocked root hair curling. However, a subcloned fragment containing only the nodC gene did not induce normal root hair curling (although some branching was observed), indicating that the nodA and B genes may also be required for normal root hair curling. From an analysis of the predicted amino acid sequences of the nodAB and C genes it appeared unlikely that their products are secreted; therefore it is concluded that the induction of root hair curling could be due to a secreted metabolite.  相似文献   

13.
Rhizobium leguminosarum bv. phaseoli CFN42 contains six plasmids (pa to pf), and pd has been shown to be the symbiotic plasmid. To determine the participation of the other plasmids in cellular functions, we used a positive selection scheme to isolate derivatives cured of each plasmid. These were obtained for all except one (pe), of which only deleted derivatives were recovered. In regard to symbiosis, we found that in addition to pd, pb is also indispensable for nodulation, partly owing to the presence of genes involved in lipopolysaccharide synthesis. The positive contribution of pb, pc, pe, and pf to the symbiotic capacity of the strain was revealed in competition experiments. The strains that were cured (or deleted for pe) were significantly less competitive than the wild type. Analysis of the growth capacity of the cured strains showed the participation of the plasmids in free-living conditions: the pf- strain was unable to grow on minimal medium, while strains cured of any other plasmid had significantly reduced growth capacity in this medium. Even on rich medium, strains lacking pb or pc or deleted for pe had a diminished growth rate compared with the wild type. Complementation of the cured strains with the corresponding wild-type plasmid restored their original phenotypes, thus confirming that the effects seen were due only to loss of plasmids. The results indicate global participation of the Rhizobium genome in symbiotic and free-living functions.  相似文献   

14.
15.
Summary A strain of R. phaseoli cured of its symbiotic plasmid, pRP2JI, retained the ability to make exopolysaccharide (EPS). However, a region of pRP2JI, when cloned at an increased copy number in wide host-range vectors and transferred to this and other strains of Rhizobium, inhibited EPS synthesis. The gene responsible was termed psi (polysaccharide inhibition) and was located in a region of the symbiotic plasmid close to nodulation and nitrogen fixation genes. psi is important in the symbiosis since a wild-type strain containing psi cloned on a multicopy plasmid failed to form Phaseolus nodules, and mutant strains containing psi::Tn5 mutations failed to fix nitrogen in Phaseolus nodules. It is proposed that the function of psi may be to repress in the bacteriod the expression of genes such as those for EPS synthesis which are normally expressed in free-living culture.  相似文献   

16.
S Bardin  S Dan  M Osteras    T M Finan 《Journal of bacteriology》1996,178(15):4540-4547
The bacterium Rhizobium meliloti forms N2-fixing root nodules on alfalfa plants. The ndvF locus, located on the 1,700-kb pEXO megaplasmid of R. meliloti, is required for nodule invasion and N2 fixation. Here we report that ndvF contains four genes, phoCDET, which encode an ABC-type transport system for the uptake of Pi into the bacteria. The PhoC and PhoD proteins are homologous to the Escherichia coli phosphonate transport proteins PhnC and PhnD. The PhoT and PhoE proteins are homologous to each other and to the E. coli phosphonate transport protein PhnE. We show that the R. meliloti phoD and phoE genes are induced in response to phosphate starvation and that the phoC promoter contains two elements which are similar in sequence to the PHO boxes present in E. coli phosphate-regulated promoters. The R. meliloti ndvF mutants grow poorly at a phosphate concentration of 2 mM, and we hypothesize that their symbiotic phenotype results from their failure to grow during the nodule infection process. Presumably, the PhoCDET transport system is employed by the bacteria in the soil environment, where the concentration of available phosphate is normally 0.1 to 1 microM.  相似文献   

17.
One type of competitive interaction among rhizobia is that between nonnodulating and nodulating strains of Rhizobium leguminosarum on primitive pea genotypes. Pisum sativum cv. Afghanistan nodulates effectively with R. leguminosarum TOM, and this can be blocked in mixed inoculations by R. leguminosarum PF2, which does not nodulate this cultivar. We termed this PF2 phenotype Cnb+, for competitive nodulation blocking. Strain PF2 contains three large plasmids including a 250-kilobase-pair symbiotic (Sym) plasmid. Transfer of this plasmid, pSymPF2, to nonblocking rhizobia conferred the Cnb+ phenotype on recipients in mixed inoculations on cultivar Afghanistan with TOM. A library of the PF2 genome constructed in the vector pMMB33 was used to isolate two cosmid clones which hybridize to pSymPF2. These cosmids, pDD50 and pDD58, overlapped to the extent of 23 kilobase pairs and conferred a Cnb+ phenotype on recipient Cnb- rhizobia, as did pSD1, a subclone from the common region.  相似文献   

18.
19.
Rhizobium leguminosarum bv. trifolii produces an acidic exopolysaccharide (EPS) that is important for the induction of nitrogen-fixing nodules on clover. Recently, three genes, pssN, pssO, and pssP, possibly involved in EPS biosynthesis and polymerization were identified. The predicted protein product of the pssP gene shows a significant sequence similarity to other proteins belonging to the PCP2a family that are involved in the synthesis of high-molecular-weight EPS. An R. leguminosarum bv. trifolii TA1 mutant with the entire coding region of pssP deleted did not produce the EPS. A pssP mutant with the 5' end of the gene disrupted produced exclusively low-molecular-weight EPS. A mutant that synthesized a functional N-terminal periplasmic domain but lacked the C-terminal part of PssP produced significantly reduced amounts of EPS with a slightly changed low to high molecular form ratio. Mutants affected in the PssP protein carrying a stable plasmid with a constitutively expressed gusA gene induced nodules on red clover that were not fully occupied by bacteria. A mutant with the entire pssP gene deleted infected only a few plant cells in the nodule. The pssP promoter-gusA reporter fusion was active in bacteroids during nodule development.  相似文献   

20.
A mutant of Rhizobium meliloti, 4R3, which is unable to grow on aspartate has been isolated. The defect is specific to aspartate utilization, since 4R3 is not an auxotroph and grows as well as its parent strain on other carbon and nitrogen sources. The defect was correlated with an inability to fix nitrogen within nodules formed on alfalfa. Transport of aspartate into the mutant cells was found to be normal. Analysis of enzymes involved in aspartate catabolism showed a significantly lower level of aspartate aminotransferase activity in cell extracts of 4R3 than in the wild type. Two unrelated regions identified from a genomic cosmid bank each complemented the aspartate catabolism and symbiotic defects in 4R3. One of the cosmids was found to encode an aspartate aminotransferase enzyme and resulted in restoration of aspartate aminotransferase activity in the mutant. Analysis of the region cloned in this cosmid by transposon mutagenesis showed that mutations within this region generate the original mutant phenotypes. The second type of cosmid was found to encode an aromatic aminotransferase enzyme and resulted in highly elevated levels of aromatic aminotransferase activity. This enzyme apparently compensated for the mutation by its ability to partially utilize aspartate as a substrate. These findings demonstrate that R. meliloti contains an aspartate aminotransferase activity required for symbiotic nitrogen fixation and implicate aspartate as an essential substrate for bacteria in the nodule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号