首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Treatment of lung epithelial cells with different kinds of nano-sized particles leads to cell proliferation. Because bigger particles fail to induce this reaction, it is suggested that the special surface properties, due to the extremely small size of these kinds of materials, is the common principle responsible for this specific cell reaction. Here the activation of the protein kinase B (Akt) signaling cascade by carbon nanoparticles was investigated with regard to its relevance for proliferation. Kinetics and dose-response experiments demonstrated that Akt is specifically activated by nanoparticulate carbon particles in rat alveolar type II epithelial cells as well as in human bronchial epithelial cells. This pathway appeared to be dependent on epidermal growth factor receptor and beta(1)-integrins. The activation of Akt by these receptors is known to be a feature of adhesion-dependent signaling. However, intracellular proteins described in this context (focal adhesion kinase pp125(FAK) and integrin-linked kinase) were not activated, indicating a specific signaling mechanism. Inhibitor studies demonstrate that nanoparticle-induced proliferation is mediated by phosphoinositide 3-kinases and Akt. Moreover, overexpression of mutant Akt, as well as pretreatment with an Akt inhibitor, reduced nanoparticle-specific ERK1/2 phosphorylation, which is decisive for nanoparticle-induced proliferation. With this report, we describe the activation of a pathway by carbon nanoparticles that was so far known to be triggered by ligand receptor binding or on cell adhesion to extracellular matrix proteins.  相似文献   

8.
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that acts as a primary regulator of focal adhesion signaling to regulate cell proliferation, survival, and migration. While FAK is known to directly influence many fundamental adhesion and growth factor signaling pathways important in cancer, and FAK is overexpressed in multiple human cancers, studies addressing a causal role for FAK in tumor initiation and progression using transgenic models of human cancer had not been performed. Recently, using tissue-specific FAK-knockout in mouse models of human cancer, the consequences of FAK ablation in carcinoma were demonstrated by multiple independent research groups. Strong consensus evidence indicates that epithelial cells are able to transform in the absence of FAK, but do not undergo a malignant conversion to invasive carcinoma, and as such, metastasis is impaired. This is likely the consequence of decreased Src and p130Cas activation in concert with misregulated actin cytoskeleton dynamics and Rho GTPase signaling. Hence, FAK, as well as the FAK-regulating/regulated signaling network, are viable candidates for cancer metastasis therapies.  相似文献   

9.
10.
11.
12.
Loss of function of metastasis suppressor genes is an important step in the progression to a malignant tumor type. Studies in cell culture and animal models have suggested a role of Raf kinase inhibitor protein (RKIP) in suppressing the metastatic spread of prostate cancer, breast cancer, and melanoma cells. However, the function of RKIP in ovarian cancer (OVCA) has not been reported. To explore the potential role of RKIP in epithelial OVCA metastasis, we detected the expression levels of RKIP protein in tissue samples from patients with epithelial OVCA. Consequently, the expression of RKIP is reduced in the poorly differentiated OVCA than in the well-differentiated and moderately differentiated OVCA. In addition, in vitro cell invasion assay indicated that the RKIP expression was inversely associated with the invasiveness of five OVCA cell lines. Consistent with this result, the cell proliferation, anchorage-independent growth, cell adhesion, and invasion were decreased in RKIP overexpressed cells but increased in RKIP down-regulated cells. Further investigation indicated that RKIP inhibited OVCA cell proliferation by altering cell cycle progression rather than promoting apoptosis. Furthermore, the overexpression of RKIP suppressed the ability of human OVCA cells to metastasize when the tumor cells were transplanted into nude mice. Our data show the effect of RKIP on the proliferation, migration, or adhesion of OVCA cells. These results indicate that RKIP is also a metastasis suppressor gene of human epithelial OVCA.  相似文献   

13.
14.
E-cadherin 参与形成细胞间黏附性连接,是胚胎发育过程中的一个关键因子。越来越多的研究表明,E-cadherin 在肿瘤的发生发 展过程中也发挥了至关重要的作用。在生物体内,E-cadherin 的表达和功能受到多个水平、多重因素的调控,而 E-cadherin 又可以影响 多条重要信号通路的活性,参与到多种生理病理过程中。E-cadherin 下调造成细胞间黏附性连接减少、极性减弱,细胞由上皮样转变为间 质样,这一变化是上皮间质转化(EMT)的重要标志之一。E-cadherin 与多种肿瘤的发生有一定的相关性。同时 E-cadherin 下调所引起 的 EMT 促进肿瘤细胞的迁移运动,肿瘤细胞侵袭力增强,促进转移的发生。近年来,大量研究关注到 E-cadherin 对肿瘤细胞的耐药及干 细胞特性的获得都有影响。综述 E-cadherin 在肿瘤发生发展中的作用,探讨以 E-cadherin 为靶点的肿瘤治疗的现状及展望。  相似文献   

15.
16.
EphA2、E-钙黏素在肿瘤中的研究   总被引:1,自引:0,他引:1  
Eph受体激酶是受体酪氨酸激酶(RTKs)家族中最大的一个亚族.EphA2是Eph受体中的一员,可以调节细胞生长、迁移和血管生成.EphA2受体广泛过表达于上皮来源的肿瘤细胞,导致正常细胞恶性转化,增强肿瘤细胞的侵袭性、浸润性和转移性.E-cadherin是一种常见的上皮黏附分子,可以介导细胞之间的黏附,细胞向正常及肿瘤组织的移动并定位,同时可以影响其它蛋白的定位和转化,进一步促进肿瘤的恶型性.研究证明:许多上皮性肿瘤中,包括食管癌、宫颈癌、乳腺癌、结肠癌等都发现EphA2和E-cadherin均有异常表达,且与肿瘤的恶性程度和疾病的预后有密切的关系.本文从EphA2、E-cadherin的结构、功能、相互关系以及在肿瘤中的研究加以综述.  相似文献   

17.
In the context of cancer, E-cadherin has traditionally been categorized as a tumor suppressor, given its essential role in the formation of proper intercellular junctions, and its downregulation in the process of epithelial-mesenchymal transition (EMT) in epithelial tumor progression. Germline or somatic mutations in the E-cadherin gene (CDH1) or downregulation by epigenetic mechanisms have been described in a small subset of epithelial cancers. However, recent evidence also points toward a promoting role of E-cadherin in several aspects of tumor progression. This includes preserved (or increased) E-cadherin expression in microemboli of inflammatory breast carcinoma, a possible "mesenchymal to epithelial transition" (MET) in ovarian carcinoma, collective cell invasion in some epithelial cancers, a recent association of E-cadherin expression with a more aggressive brain tumor subset, as well as the intriguing possibility of E-cadherin involvement in specific signaling networks in the cytoplasm and/or nucleus. In this review we address a lesser-known, positive role for E-cadherin in cancer.  相似文献   

18.
Metastatic progression of most common epithelial tumors involves a heterogeneous, transient loss of expression of the homotypic cell adhesion protein, E-cadherin, rather than the uniform loss of a functional protein resulting from coding region mutation. Indeed, whereas E-cadherin loss may promote invasion, reexpression may facilitate cell survival within metastatic deposits. The mechanisms underlying such plasticity are unclear. We now show that the heterogeneous loss of E-cadherin expression in primary human breast cancers reflects a heterogeneous pattern of promoter region methylation, which begins early prior to invasion. In cultured human tumor cells, such heterogeneous methylation is dynamic, varying from allele to allele and shifting in relation to the tumor microenvironment. Following invasion in vitro, which favors diminished E-cadherin expression, the density of promoter methylation markedly increased. When these cells were cultured as spheroids, which requires homotypic cell adhesion, promoter methylation decreased dramatically, and E-cadherin was reexpressed. These data show that the methylation associated with E-cadherin loss in human breast cancer is heterogeneous and unstable and suggest that such epigenetic plasticity may contribute to the dynamic, phenotypic heterogeneity that drives metastatic progression.  相似文献   

19.
Zhu J  Pan X  Zhang Z  Gao J  Zhang L  Chen J 《Cellular signalling》2012,24(6):1323-1332
Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase in cytoplasm. Recent studies showed that cancer patients with increased ILK expression had low survival, poor prognosis and increased metastasis. Although the causes of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration. However, the mechanisms underlying tumor metastasis by ILK is still not fully understood. Epithelial–mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. We recently reported that knockdown of ILK inhibited the growth and induced apoptosis in human bladder cancer cells. Therefore, we postulate that ILK might involve in EMT. Here we further investigate the function of ILK with RNA interference in bladder cancer cells. Knockdown of ILK impeded an EMT with low Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and vitro. In addition, we found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β, increased expression of nm23-H1, as well as reduced expression of MMP-2 and MMP-9 in vivo and vitro. Furthermore, downregulation of ILK could increase expression of Ribonuclease inhibitor (RI), an important acidic cytoplasmic protein with many functions. Finally, the effects of ILK siRNA on bladder cancer cell phenotype and invasiveness translate into suppression for tumorigenesis and metastasis in vivo. Taken together, our findings highlight that ILK signaling pathway plays a novel role in the development of bladder cancer through regulating EMT. ILK could be a promising diagnostic marker and therapeutic target for bladder cancer.  相似文献   

20.
In the context of cancer, E-cadherin has traditionally been categorized as a tumor suppressor, given its essential role in the formation of proper intercellular junctions, and its downregulation in the process of epithelial–mesenchymal transition (EMT) in epithelial tumor progression. Germline or somatic mutations in the E-cadherin gene (CDH1) or downregulation by epigenetic mechanisms have been described in a small subset of epithelial cancers. However, recent evidence also points toward a promoting role of E-cadherin in several aspects of tumor progression. This includes preserved (or increased) E-cadherin expression in microemboli of inflammatory breast carcinoma, a possible “mesenchymal to epithelial transition” (MET) in ovarian carcinoma, collective cell invasion in some epithelial cancers, a recent association of E-cadherin expression with a more aggressive brain tumor subset, as well as the intriguing possibility of E-cadherin involvement in specific signaling networks in the cytoplasm and/or nucleus. In this review we address a lesser-known, positive role for E-cadherin in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号