首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

The process of malignant transformation, progression and metastasis of melanoma is poorly understood. Gene expression profiling of human cancer has allowed for a unique insight into the genes that are involved in these processes. Thus, we have attempted to utilize this approach through the analysis of a series of primary, non-metastatic cutaneous tumors and metastatic melanoma samples.

Methods

We have utilized gene microarray analysis and a variety of molecular techniques to compare 40 metastatic melanoma (MM) samples, composed of 22 bulky, macroscopic (replaced) lymph node metastases, 16 subcutaneous and 2 distant metastases (adrenal and brain), to 42 primary cutaneous cancers, comprised of 16 melanoma, 11 squamous cell, 15 basal cell skin cancers. A Human Genome U133 Plus 2.0 array from Affymetrix, Inc. was utilized for each sample. A variety of statistical software, including the Affymetrix MAS 5.0 analysis software, was utilized to compare primary cancers to metastatic melanomas. Separate analyses were performed to directly compare only primary melanoma to metastatic melanoma samples. The expression levels of putative oncogenes and tumor suppressor genes were analyzed by semi- and real-time quantitative RT-PCR (qPCR) and Western blot analysis was performed on select genes.

Results

We find that primary basal cell carcinomas, squamous cell carcinomas and thin melanomas express dramatically higher levels of many genes, including SPRR1A/B, KRT16/17, CD24, LOR, GATA3, MUC15, and TMPRSS4, than metastatic melanoma. In contrast, the metastatic melanomas express higher levels of genes such as MAGE, GPR19, BCL2A1, MMP14, SOX5, BUB1, RGS20, and more. The transition from non-metastatic expression levels to metastatic expression levels occurs as melanoma tumors thicken. We further evaluated primary melanomas of varying Breslow's tumor thickness to determine that the transition in expression occurs at different thicknesses for different genes suggesting that the "transition zone" represents a critical time for the emergence of the metastatic phenotype. Several putative tumor oncogenes (SPP-1, MITF, CITED-1, GDF-15, c-Met, HOX loci) and suppressor genes (PITX-1, CST-6, PDGFRL, DSC-3, POU2F3, CLCA2, ST7L), were identified and validated by quantitative PCR as changing expression during this transition period. These are strong candidates for genes involved in the progression or suppression of the metastatic phenotype.

Conclusion

The gene expression profiling of primary, non-metastatic cutaneous tumors and metastatic melanoma has resulted in the identification of several genes that may be centrally involved in the progression and metastatic potential of melanoma. This has very important implications as we continue to develop an improved understanding of the metastatic process, allowing us to identify specific genes for prognostic markers and possibly for targeted therapeutic approaches.  相似文献   

3.

Objectives

Metastasis is the most significant prognostic factor for laryngeal carcinoma which necessitates the identification of molecular alterations associated with metastasis. The identification of such molecular alterations will not only prove useful in treatment but also provide insight into mechanisms of cancer metastasis. The studies conducted so far have not specifically focused on metastasis or invasion pathways. Therefore we investigated the expression profiles with a pathway focused approach.

Materials and methods

Total RNA was extracted from 36 laryngeal tumors and paired cancer free tissue. Expression levels of 88 genes were determined using a PCR array system following cDNA synthesis. Obtained data was used for the calculation of altered expression levels, facilitating relevant algorithms. Significant alterations were determined according to their p-value obtained by Student's t-test.

Results

Sixteen genes have shown altered expression when compared with adjacent cancer-free tissue. 2 of these 16 genes have shown differential expression in tumors with neck metastasis in respect to non-metastatic tumors.

Conclusion

We found that TGFB1, TIMP1, c-Myc, SPARC, COL4A2 and SOX4 show altered expression in laryngeal tumors. c-Myc and SOX4 expression is decreased as laryngeal tumors switch to metastatic phenotype.  相似文献   

4.
5.
Sine oculis homeobox homolog 1 (SIX1) has been supposed to be correlated with the metastasis and poor prognosis of several malignancies. However, the effect of SIX1 on the metastatic phenotype of tumor cells and the underlying mechanisms were still unclear to date. Here we report that SIX1 can promote α5β1-mediated metastatic capability of cervical cancer cells. SIX1 promoted the expression of α5β1 integrin to enhance the adhesion capacity of tumor cells in vitro and tumor cell arrest in circulation in vivo. Moreover, higher expression of SIX1 in tumor cells resulted in the increased production of active MMP-2 and MMP-9, up-regulation of anti-apoptotic genes (BCL-XL and BCL2) and down-regulation of pro-apoptotic genes (BIM and BAX), thus promoting the invasive migration and anoikis-resistance of tumor cells. Importantly, blocking α5β1 abrogated the regulatory effect of SIX1 on the expression of these genes, and also abolished the promotional effect of SIX1 on invasive capability of tumor cells. Furthermore, knock-down of α5 could abolish the promoting effect of SIX1 on the development of metastatic lesions in both experimental and spontaneous metastasis model. Therefore, by up-regulating α5β1 expression, SIX1 not only promoted the adhesion capacity, but also augmented ECM-α5β1-mediated regulation of gene expression to enhance the metastatic potential of cervical cancer cells. These results suggest that SIX1/α5β1 might be considered as valuable marker for metastatic potential of cervical cancer cells, or a therapeutic target in cervical cancer treatment.  相似文献   

6.
To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis.  相似文献   

7.
8.
IntroductionMetastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens.Methods468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens.ResultsAn average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair).ConclusionsWhereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution.  相似文献   

9.
10.
Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development.  相似文献   

11.
12.
Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer.  相似文献   

13.
14.
15.

Background

Despite being the most common pelvic gynecologic malignancy in industrialized countries, no targeted therapies are available for patients with metastatic endometrial carcinoma. In order to improve treatment, underlying molecular characteristics of primary and metastatic disease must be explored.

Methodology/Principal Findings

We utilized the mass spectrometric-based mutation detection technology OncoMap to define the types and frequency of point somatic mutations in endometrial cancer. 67 primary tumors, 15 metastases corresponding to 7 of the included primary tumors and 11 endometrial cancer cell lines were screened for point mutations in 28 known oncogenes. We found that 27 (40.3%) of 67 primary tumors harbored one or more mutations with no increase in metastatic lesions. FGFR2, KRAS and PIK3CA were consistently the most frequently mutated genes in primary tumors, metastatic lesions and cell lines.

Conclusions/Significance

Our results emphasize the potential for targeting FGFR2, KRAS and PIK3CA mutations in endometrial cancer for development of novel therapeutic strategies.  相似文献   

16.
The molecular pathology of thymic epithelial tumors (TETs) is largely unknown. Using array comparative genomic hybridization (CGH), we evaluated 59 TETs and identified recurrent patterns of copy number (CN) aberrations in different histotypes. GISTIC algorithm revealed the presence of 126 significant peaks of CN aberration, which included 13 cancer-related genes. Among these peaks, CN gain of BCL2 and CN loss of CDKN2A/B were the only genes in the respective regions of CN aberration and were associated with poor outcome. TET cell lines were sensitive to siRNA knockdown of the anti-apoptotic molecules BCL2 and MCL1. Gx15-070, a pan-BCL2 inhibitor, induced autophagy-dependent necroptosis in TET cells via a mechanism involving mTOR pathways, and inhibited TET xenograft growth. ABT263, an inhibitor of BCL2/BCL-XL/BCL-W, reduced proliferation in TET cells when administered in combination with sorafenib, a tyrosine kinase inhibitor able to downregulate MCL1. Immunohistochemistry on 132 TETs demonstrated that CN loss of CDKN2A correlated with lack of expression of its related protein p16INK4 and identified tumors with poor prognosis. The molecular markers BCL2 and CDKN2A may be of potential value in diagnosis and prognosis of TETs. Our study provides the first preclinical evidence that deregulated anti-apoptotic BCL2 family proteins may represent suitable targets for TET treatment.  相似文献   

17.
Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.  相似文献   

18.
The causal role of the hedgehog pathway in cancer has been best documented in basal cell carcinoma of the skin. To assess potential DNA alterations of the hedgehog pathway in gastric cancer, we sequenced SMO and PTCH1 genes in a set of 39 gastric tumors. Tumors were classified by histology based on the Lauren classification and Sanger sequencing was performed to obtain full length coding sequences. Genomic instability was evident in these tumors as a number of silent or missense mutations were found. In addition to those that are potential germline polymorphisms, we found three SMO missense mutations, and one PTCH1 frameshift mutation that are novel and have not been documented in basal cell carcinoma. Mutations were found in both intestinal and diffuse type gastric tumors as well as in tumors that exhibit both intestinal and diffuse features. mRNA expression of hedgehog pathway genes was also examined and their levels do not indicate unequivocal higher pathway activity in tumors with mutations than those without. In summary, SMO and/or PTCH1 mutations are present at low frequency in different histologic subtypes of gastric tumors and these do not appear to be driver mutations.  相似文献   

19.
Osteoblastoma is a bone forming tumor with histological features highly similar to osteoid osteoma; the discrimination between the tumor types is based on size and growth pattern. The vast majority of osteoblastomas are benign but there is a group of so-called aggressive osteoblastomas that can be diagnostically challenging at the histopathological level. The genetic aberrations required for osteoblastoma development are not known and no genetic difference between conventional and aggressive osteoblastoma has been reported. In order to identify recurrent genomic aberrations of importance for tumor development we applied cytogenetic and/or SNP array analyses on nine conventional and two aggressive osteoblastomas. The conventional osteoblastomas showed few or no acquired genetic aberrations while the aggressive tumors displayed heavily rearranged genomes. In one of the aggressive osteoblastomas, three neighboring regions in chromosome band 22q12 were homozygously deleted. Hemizygous deletions of these regions were found in two additional cases, one aggressive and one conventional. In total, 10 genes were recurrently and homozygously lost in osteoblastoma. Four of them are functionally involved in regulating osteogenesis and/or tumorigenesis. MN1 and NF2 have previously been implicated in the development of leukemia and solid tumors, and ZNRF3 and KREMEN1 are inhibitors of the Wnt/beta-catenin signaling pathway. In line with deletions of the latter two genes, high beta-catenin protein expression has previously been reported in osteoblastoma and aberrations affecting the Wnt/beta-catenin pathway have been found in other bone lesions, including osteoma and osteosarcoma.  相似文献   

20.
Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号