首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.  相似文献   

2.
Malaria is a haemato-protozoan disease which causes thousands of deaths every year. Due to the alarming increase of drug resistant strains of P. falciparum, malaria is now becoming more deadly. Helicases are the most important components of the cellular machinery without which cells are unable to survive. The importance of helicases has been proven in variety of organisms. In this study we have reported detailed biochemical characterization of human homologue of DDX3X from Plasmodium falciparum (PfDDX3X). Our study revealed that PfDDX3X is ATP- dependent DNA helicase whereas in human host it is ATP-dependent RNA helicase. We show that N-terminal is essential for its activity and it is present in nucleus and cytoplasm in intraerythrocytic developmental stages of P. falciparum 3D7 strain. Also, it is highly expressed in the schizont stage of P. falciparum 3D7strain. The present study suggests that a protein can perform different functions in different systems. The present study will help to understand the basic biology of malaria parasite P. falciparum.  相似文献   

3.
Plasmodium falciparum is a protozoan parasite that is responsible for the most pathogenic form of human malaria. The particular virulence of this parasite derives from its ability to develop within the erythrocytes of its host and to subvert their function. The intraerythrocytic parasite devours haemoglobin, and remodels its host cell to cause adhesion to blood vessel walls. Ultrastructural studies of P. falciparum have played a major role in defining its cell architecture and in resolving cell biology controversies. Here we review some of the early studies and describe some recent developments in electron microscopy techniques that have revealed information about the organization of the parasite in the blood stage of development. We present images of P. falciparum at different stages of the life cycle and highlight some of the plasmodium-specific organelles, the haemoglobin digestive apparatus and the membrane structures that are elaborated in the host cell cytoplasm to traffic virulence proteins to the erythrocyte surface. We describe methods for whole cell ultrastructural imaging that can provide three-dimensional views of intraerythrocytic development.  相似文献   

4.
Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60–99%. Of those mosquitoes that were infected, we observed a 75–99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18–20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.  相似文献   

5.
《Trends in parasitology》2023,39(3):200-211
During its life cycle, the human malaria parasite Plasmodium falciparum is subjected to elevated levels of oxidative stress that cause damage to membrane lipids, a process referred to as lipid peroxidation. Control and repair of lipid peroxidation is critical for survival of P. falciparum. Here, we present an introduction into lipid peroxidation and review the current knowledge about the control and repair of the damage caused by lipid peroxidation in P. falciparum blood stages. We also review the recent identification of host peroxiredoxin 6 (PRDX6), as a key lipid-peroxidation-repair enzyme in P. falciparum blood stages. Such critical host factors provide novel targets for development of drugs against malaria.  相似文献   

6.
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.  相似文献   

7.
Despite being phylogenetically very close to Anopheles gambiae, the major mosquito vector of human malaria in Africa, Anopheles quadriannulatus is thought to be a non-vector. Understanding the difference between vector and non-vector mosquitoes can facilitate development of novel malaria control strategies. We demonstrate that An. quadriannulatus is largely resistant to infections by the human parasite Plasmodium falciparum, as well as by the rodent parasite Plasmodium berghei. By using genetics and reverse genetics, we show that resistance is controlled by quantitative heritable traits and manifested by lysis or melanization of ookinetes in the mosquito midgut, as well as by killing of parasites at subsequent stages of their development in the mosquito. Genes encoding two leucine-rich repeat proteins, LRIM1 and LRIM2, and the thioester-containing protein, TEP1, are identified as essential in these immune reactions. Their silencing completely abolishes P. berghei melanization and dramatically increases the number of oocysts, thus transforming An. quadriannulatus into a highly permissive parasite host. We hypothesize that the mosquito immune system is an important cause of natural refractoriness to malaria and that utilization of this innate capacity of mosquitoes could lead to new methods to control transmission of the disease.  相似文献   

8.
Malaria is caused by protozoan parasites of the genus Plasmodium. Four species infect humans, causing up to 500 million new infections and 2 million deaths annually. Plasmodium vivaxauses the most prevalent form of recurrent human malaria, responsible for significant morbidity throughout Asia and South America. With increased levels of drug-resistant strains and insecticide-resistant mosquito vectors, efforts to develop possible vaccines have been a major focus of malaria research. Our improved understanding of the basic biology and life cycle of Plasmodium has led to the identification and development of possible vaccine candidates and strategies.  相似文献   

9.
PDC (pyruvate dehydrogenase complex) is a multi-enzyme complex comprising an E1 (pyruvate decarboxylase), an E2 (dihydrolipomide acetyltransferase) and an E3 (dihydrolipoamide dehydrogenase). PDC catalyses the decarboxylation of pyruvate and forms acetyl-CoA and NADH. In the human malaria parasite Plasmodium falciparum, the single PDC is located exclusively in the apicoplast. Plasmodium PDC is essential for parasite survival in the mosquito vector and for late liver stage development in the human host, suggesting its suitability as a target for intervention strategies against malaria. Here, PfaE3 (P. falciparum apicoplast E3) was recombinantly expressed and characterized. Biochemical parameters were comparable with those determined for E3 from other organisms. A homology model for PfaE3 reveals an extra anti-parallel β-strand at the position where human E3BP (E3-binding protein) interacts with E3; a parasite-specific feature that may be exploitable for drug discovery against PDC. To assess the biological role of Pfae3, it was deleted from P. falciparum and although the mutants are viable, they displayed a highly synchronous growth phenotype during intra-erythrocytic development. The mutants also showed changes in the expression of some mitochondrial and antioxidant proteins suggesting that deletion of Pfae3 impacts on the parasite''s metabolic function with downstream effects on the parasite''s redox homoeostasis and cell cycle.  相似文献   

10.
Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA), can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP) stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG) inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+) is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.  相似文献   

11.
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA‐like protein, merozoite apical erythrocyte‐binding ligand (MAEBL). MAEBL‐deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.  相似文献   

12.
Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA), can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP) stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG) inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+) is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.  相似文献   

13.
Nearly 60% of Plasmodium falciparum proteins are still uncharacterized and their functions are unknown. In this report, we carried out the functional characterization of a 45 kDa protein (PF3D7_1459400) and showed its potential as a target for blood stage malaria vaccine development. Analysis of protein subcellular localization, native protein expression profile, and erythrocyte invasion inhibition of both clinical and laboratory parasite strains by peptide antibodies suggest a functional role of PF3D7_1459400 protein during erythrocyte invasion. Also, immunoreactivity screens using synthetic peptides of the protein showed that adults resident in malaria endemic regions in Ghana have naturally acquired plasma antibodies against PF3D7_1459400 protein. Altogether, this study presents PF3D7_1459400 protein as a potential target for the development of peptide-based vaccine for blood-stage malaria.Impact statementPlasmodium falciparum malaria is a global health problem. Erythrocyte invasion by P. falciparum merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion. Our data on protein subcellular localization, stage-specific protein expression pattern, and merozoite invasion inhibition by α-peptide antibodies suggest a role for PF3D7_1459400 protein during P. falciparum erythrocyte invasion. Even more, the human immunoepidemiology data present PF3D7_1459400 protein as an immunogenic antigen which could be further exploited for the development of new anti-infective therapy against malaria.  相似文献   

14.
The prodigious rate at which malaria parasites proliferate during asexual blood-stage replication, midgut sporozoite production, and intrahepatic development creates a substantial requirement for essential nutrients, including fatty acids that likely are necessary for parasite membrane formation. Plasmodium parasites obtain fatty acids either by scavenging from the vertebrate host and mosquito vector or by producing fatty acids de novo via the type two fatty acid biosynthesis pathway (FAS-II). Here, we study the FAS-II pathway in Plasmodium falciparum, the species responsible for the most lethal form of human malaria. Using antibodies, we find that the FAS-II enzyme FabI is expressed in mosquito midgut oocysts and sporozoites as well as liver-stage parasites but not during the blood stages. As expected, FabI colocalizes with the apicoplast-targeted acyl carrier protein, indicating that FabI functions in the apicoplast. We further analyze the FAS-II pathway in Plasmodium falciparum by assessing the functional consequences of deleting fabI and fabB/F. Targeted deletion or disruption of these genes in P. falciparum did not affect asexual blood-stage replication or the generation of midgut oocysts; however, subsequent sporozoite development was abolished. We conclude that the P. falciparum FAS-II pathway is essential for sporozoite development within the midgut oocyst. These findings reveal an important distinction from the rodent Plasmodium parasites P. berghei and P. yoelii, where the FAS-II pathway is known to be required for normal parasite progression through the liver stage but is not required for oocyst development in the Anopheles mosquito midgut.  相似文献   

15.
Intraerythrocytic development of the human malaria parasite Plasmodium falciparum appears as a continuous flow through growth and proliferation. To develop a greater understanding of the critical regulatory events, we utilized piggyBac insertional mutagenesis to randomly disrupt genes. Screening a collection of piggyBac mutants for slow growth, we isolated the attenuated parasite C9, which carried a single insertion disrupting the open reading frame (ORF) of PF3D7_1305500. This gene encodes a protein structurally similar to a mitogen-activated protein kinase (MAPK) phosphatase, except for two notable characteristics that alter the signature motif of the dual-specificity phosphatase domain, suggesting that it may be a low-activity phosphatase or pseudophosphatase. C9 parasites demonstrated a significantly lower growth rate with delayed entry into the S/M phase of the cell cycle, which follows the stage of maximum PF3D7_1305500 expression in intact parasites. Genetic complementation with the full-length PF3D7_1305500 rescued the wild-type phenotype of C9, validating the importance of the putative protein phosphatase PF3D7_1305500 as a regulator of pre-S-phase cell cycle progression in P. falciparum.  相似文献   

16.
17.
18.
Research on Plasmodium sporozoite biology aims at understanding the developmental program steering the formation of mature infectious sporozoites - the transmission stage of the malaria parasite. The recent identification of genes that are vital for sporozoite egress from oocysts and subsequent targeting and transmigration of the mosquito salivary glands allows the identification of mosquito factors required for life cycle completion. Mature sporozoites appear to be equipped with the entire molecular repertoire for successful transmission and subsequent initiation of liver stage development. Innovative malaria intervention strategies that target the early, non-pathogenic phases of the life cycle will crucially depend on our insights into sporozoite biology and the underlying molecular mechanisms that lead the parasite from the mosquito midgut to the liver.  相似文献   

19.
A Plasmodium falciparum hexose transporter (PfHT) has previously been shown to be a facilitative glucose and fructose transporter. Its expression in Xenopus laevis oocytes and the use of a glucose analogue inhibitor permitted chemical validation of PfHT as a novel drug target. Following recent re‐annotations of the P. falciparum genome, other putative sugar transporters have been identified. To investigate further if PfHT is the key supplier of hexose to P. falciparum and to extend studies to different stages of Plasmodium spp., we functionally analysed the hexose transporters of both the human parasite P. falciparum and the rodent parasite Plasmodium berghei using gene targeting strategies. We show here the essential function of pfht for the erythrocytic parasite growth as it was not possible to knockout pfht unless the gene was complemented by an episomal construct. Also, we show that parasites are rescued from the toxic effect of a glucose analogue inhibitor when pfht is overexpressed in these transfectants. We found that the rodent malaria parasite orthologue, P. berghei hexose transporter (PbHT) gene, was similarly refractory to knockout attempts. However, using a single cross‐over transfection strategy, we generated transgenic P. berghei parasites expressing a PbHT–GFP fusion protein suggesting that locus is amenable for gene targeting. Analysis of pbht‐gfp transgenic parasites showed that PbHT is constitutively expressed through all the stages in the mosquito host in addition to asexual stages. These results provide genetic support for prioritizing PfHT as a target for novel antimalarials that can inhibit glucose uptake and kill parasites, as well as unveiling the expression of this hexose transporter in mosquito stages of the parasite, where it is also likely to be critical for survival.  相似文献   

20.
Plasmodium falciparum infections in malaria endemic areas often harbor multiple clones of parasites. However, the transmission success of the different genotypes within the mosquito vector has remained elusive so far. The genetic diversity of malaria parasites was measured by using microsatellite markers in gametocyte isolates from 125 asymptomatic carriers. For a subset of 49 carriers, the dynamics of co-infecting genotypes was followed until their development within salivary glands. Also, individual oocysts from midguts infected with blood from 9 donors were genotyped to assess mating patterns. Multiplicity of infection (MOI) was high both in gametocyte isolates and sporozoite populations, reaching up to 10 genotypes. Gametocyte isolates with multiple genotypes gave rise to lower infection prevalence and intensity. Fluctuations of genotype number occurred during the development within the mosquito and sub-patent genotypes, not detected in gametocyte isolates, were identified in the vector salivary glands. The inbreeding coefficient Fis was positively correlated to the oocyst loads, suggesting that P. falciparum parasites use different reproductive strategies according to the genotypes present in the gametocyte isolate. The number of parasite clones within an infection affects the transmission success and the mosquito has an important role in maintaining P. falciparum genetic diversity. Our results emphasize the crucial importance of discriminating between the different genotypes within an infection when studying the A. gambiae natural resistance to P. falciparum, and the need to monitor parasite diversity in areas where malaria control interventions are implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号