首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
In this report we provide evidence that the antimicrobial action of stannous salts and a gold drug, auranofin, against Treponema denticola is mediated through inhibition of the metabolism of selenium for synthesis of selenoproteins.The biological use of selenium as a catalyst, incorporated into proteins as selenocysteine, is broad. It plays an essential role in energy metabolism, redox balance, and reproduction in a variety of organisms, from bacterial pathogens to eukaryotic parasites to humans. The results of several epidemiological studies indicate that higher levels of selenium in the mammalian diet can have a negative effect on dental health (2, 17-19, 39). Although the impact of selenium is attributed to its influence on the physical properties of the enamel surface (10), the role of selenium in supporting the oral microbial community has not been studied.The oral cavity is a highly complex microbiome, with a large proportion of its residents uncharacterized due to their fastidious nature and resistance to traditional culture methods (11). Analysis of whole saliva indicates that bacterial metabolism influences the amino acid composition and indicates a role for amino acid fermentation (38). Curtis et al. demonstrated the occurrence of Stickland reactions in dental plaque (9). These reactions were first described in clostridia (35-37). They involve the coupled fermentation of amino acids in which one amino acid is oxidized (Stickland donor) and another (Stickland acceptor) is reduced (29). Treponema denticola, an established resident of the oral cavity, performs Stickland reactions via the selenoprotein glycine reductase (32). Glycine reductase is composed of a multiprotein complex that contains two separate selenoproteins, termed selenoprotein A and selenoprotein B (1, 7, 8, 15, 16). This complex of proteins converts glycine to acetyl phosphate by using inorganic phosphate and the reducing potential from thioredoxin. For the organisms that use this complex, this is a vital source of ATP. Thus far, the requirement for selenocysteine at the active site of this enzyme complex is universally conserved, even though all other selenoproteins that have been identified using computational techniques have a putative cysteine homologue (24).Treponema denticola is considered one of the primary pathogens responsible for periodontitis, a chronic inflammatory disease that is the major cause of adult tooth loss (11, 27, 33). It is the best-studied oral spirochete, commonly found with other spirochetes within the periodontal pocket. It expresses a variety of virulence factors and is capable of adhering to and penetrating endothelial cell monolayers (31). Its health impact may reach beyond the oral cavity. A recent study linked periodontitis with peripheral arterial disease and detected T. denticola, along with other periodontal pathogens, in atherosclerotic plaque (3). Sequence analysis indicates the presence of several selenoproteins in addition to glycine reductase within the genome of T. denticola (24). This organism exhibits a strict growth requirement for selenium (32).A significant literature exists that clearly demonstrates the antimicrobial activity of fluoride compounds against microorganisms associated with dental decay and periodontitis. Both sodium fluoride and stannous fluoride, as well as stannous ions alone, inhibit the growth of T. denticola (21). The inhibitory effect of stannous salts on T. denticola''s growth is unexplained. It should be noted that toothpastes containing stannous fluoride are more effective in reducing gingivitis and plaque (28, 30).Tin, as well as several other trace elements, modulates the effects of acute selenium toxicity (20). Conversely, selenium affects the activity of tin in animal models (4-6). In this study, we examine the possibility that stannous ions interfere with selenium metabolism in T. denticola.  相似文献   

2.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

3.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

4.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

5.
6.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

7.
8.
9.
10.
Porcine circovirus type 1 (PCV1), originally isolated as a contaminant of PK-15 cells, is nonpathogenic, whereas porcine circovirus type 2 (PCV2) causes an economically important disease in pigs. To determine the factors affecting virus replication, we constructed chimeric viruses by swapping open reading frame 1 (ORF1) (rep) or the origin of replication (Ori) between PCV1 and PCV2 and compared the replication efficiencies of the chimeric viruses in PK-15 cells. The results showed that the replication factors of PCV1 and PCV2 are fully exchangeable and, most importantly, that both the Ori and rep of PCV1 enhance the virus replication efficiencies of the chimeric viruses with the PCV2 backbone.Porcine circovirus (PCV) is a single-stranded DNA virus in the family Circoviridae (34). Type 1 PCV (PCV1) was discovered in 1974 as a contaminant of porcine kidney cell line PK-15 and is nonpathogenic in pigs (31-33). Type 2 PCV (PCV2) was discovered in piglets with postweaning multisystemic wasting syndrome (PMWS) in the mid-1990s and causes porcine circovirus-associated disease (PCVAD) (1, 9, 10, 25). PCV1 and PCV2 have similar genomic organizations, with two major ambisense open reading frames (ORFs) (16). ORF1 (rep) encodes two viral replication-associated proteins, Rep and Rep′, by differential splicing (4, 6, 21, 22). The Rep and Rep′ proteins bind to specific sequences within the origin of replication (Ori) located in the intergenic region, and both are responsible for viral replication (5, 7, 8, 21, 23, 28, 29). ORF2 (cap) encodes the immunogenic capsid protein (Cap) (26). PCV1 and PCV2 share approximately 80%, 82%, and 62% nucleotide sequence identity in the Ori, rep, and cap, respectively (19).In vitro studies using a reporter gene-based assay system showed that the replication factors of PCV1 and PCV2 are functionally interchangeable (2-6, 22), although this finding has not yet been validated in a live infectious-virus system. We have previously shown that chimeras of PCV in which cap has been exchanged between PCV1 and PCV2 are infectious both in vitro and in vivo (15), and an inactivated vaccine based on the PCV1-PCV2 cap (PCV1-cap2) chimera is used in the vaccination program against PCVAD (13, 15, 18, 27).PCV1 replicates more efficiently than PCV2 in PK-15 cells (14, 15); thus, we hypothesized that the Ori or rep is directly responsible for the differences in replication efficiencies. The objectives of this study were to demonstrate that the Ori and rep are interchangeable between PCV1 and PCV2 in a live-virus system and to determine the effects of swapped heterologous replication factors on virus replication efficiency in vitro.  相似文献   

11.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

12.
13.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

14.
Magnetosome biomineralization and magnetotaxis in magnetotactic bacteria are controlled by numerous, mostly unknown gene functions that are predominantly encoded by several operons located within the genomic magnetosome island (MAI). Genetic analysis of magnetotactic bacteria has remained difficult and requires the development of novel tools. We established a Cre-lox-based deletion method which allows the excision of large genomic fragments in Magnetospirillum gryphiswaldense. Two conjugative suicide plasmids harboring lox sites that flanked the target region were subsequently inserted into the chromosome by homologous recombination, requiring only one single-crossover event, respectively, and resulting in a double cointegrate. Excision of the targeted chromosomal segment that included the inserted plasmids and their resistance markers was induced by trans expression of Cre recombinase, which leaves behind a scar of only a single loxP site. The Cre helper plasmid was then cured from the deletant strain by relief of antibiotic selection. We have used this method for the deletion of 16.3-kb, 61-kb, and 67.3-kb fragments from the genomic MAI, either in a single round or in subsequent rounds of deletion, covering a region of approximately 87 kb that comprises the mamAB, mms6, and mamGFDC operons. As expected, all mutants were Mag and some were Mot; otherwise, they showed normal growth patterns, which indicates that the deleted region is not essential for viability in the laboratory. The method will facilitate future functional analysis of magnetosome genes and also can be utilized for large-scale genome engineering in magnetotactic bacteria.Magnetosomes are unique membrane-enveloped organelles that are formed by magnetotactic bacteria (MTB) for magnetic navigation (2, 37). The mechanism of magnetosome formation is within the focus of a multidisciplinary interest and has relevance for biotechnological applications (5). It has been recognized that the biomineralization of inorganic magnetite crystals and their assembly into highly ordered magnetosome chains are under strict genetic control. Recent studies combining proteomic and bioinformatic approaches suggested that the genetic determination of magnetosome formation is complex and may potentially involve 25 to 50 gene functions (15), with unknown numbers of accessory genes and those controlling signal transduction and motility to achieve effective magnetotaxis (8, 9, 12, 26, 27, 29). However, the functional characterization of these candidate genes has been lagging behind. This is due to technical difficulties and the lack of facile tools for genetic manipulation of MTB. Allelic replacement systems have been established for Magnetospirillum magneticum (18) and Magnetospirillum gryphiswaldense (39, 40), but so far, there are only few examples of these for magnetosome genes that were functionally characterized because of the tedious and cumbersome procedures required for mutant generation (11, 19, 28, 31-32). Most genes controlling magnetosome formation in these and other MTB are located within a genomic magnetosome island (MAI) (34), which is genetically instable during stationary growth (47) and more or less conserved in other MTB (12, 13, 35). Most known magnetosome genes are organized within several conserved operons, which are interspersed with large, poorly conserved genome sections of unknown functions that have been speculated to represent genetic junk irrelevant for magnetotaxis but to cause genetic instability by their high content of repeats and transposable elements (34, 47). Thus, for large-scale functional genome analysis and rearrangements of the MAI, there is a great need for additional and more efficient genetic methods.Artificial genome recombination systems have been described for a number of bacteria. Many of them are based on the Cre-loxP system of the P1 phage (42). The Cre-loxP recombination system is a simple two-component system that is recognized as a powerful genetic tool in a multitude of eukaryotic and prokaryotic organisms (4, 6, 48). The Cre protein belongs to the integrase family of site-specific recombinases and catalyzes reciprocal site-specific recombination of DNA at 34-bp loxP sites, resulting in either excision or inversion, depending on the parallel or antiparallel orientation of the loxP sites, respectively (21). It does not require any host cofactors or accessory proteins (7). Cre-lox deletion has several advantages over other methods, such as a high efficiency and the independency of the length of DNA located between the two lox sites. The utility of Cre-lox systems has been demonstrated in a wide variety of Gram-positive and Gram-negative bacteria (17, 22-23). In several studies, it was applied for the generation of large-scale deletions, as in for example, the Gram-positive Corynebacterium glutamicum (43-46) and Bacillus subtilis (49).In M. gryphiswaldense, the functionality of a Cre-loxP antibiotic marker recycling system (25) has been previously demonstrated by deletion of a single gene based on double-crossover insertion of two loxP sites, followed by subsequent Cre-mediated excision (31). In this study, we describe a novel strategy for Cre-loxP-mediated deletion of large genomic fragments which requires only two single crossovers. The system has been validated by the generation of three large deletions, two single and one combination within the MAI, which demonstrated that the total deleted region of approximately 87 kb is not essential for viability and growth in the laboratory.  相似文献   

15.
16.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

17.
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium relies on its Salmonella pathogenicity island 2 (SPI2) type III secretion system (T3SS) for intracellular replication and virulence. We report that the oxidoreductase thioredoxin 1 (TrxA) and SPI2 are coinduced for expression under in vitro conditions that mimic an intravacuolar environment, that TrxA is needed for proper SPI2 activity under these conditions, and that TrxA is indispensable for SPI2 activity in both phagocytic and epithelial cells. Infection experiments in mice demonstrated that SPI2 strongly contributed to virulence in a TrxA-proficient background whereas SPI2 did not affect virulence in a trxA mutant. Complementation analyses using wild-type trxA or a genetically engineered trxA coding for noncatalytic TrxA showed that the catalytic activity of TrxA is essential for SPI2 activity in phagocytic cells whereas a noncatalytic variant of TrxA partially sustained SPI2 activity in epithelial cells and virulence in mice. These results show that TrxA is needed for the intracellular induction of SPI2 and provide new insights into the functional integration between catalytic and noncatalytic activities of TrxA and a bacterial T3SS in different settings of intracellular infections.In Escherichia coli, thioredoxin 1 (TrxA, encoded by trxA) is an evolutionary conserved 11-kDa cytosolic highly potent reductase that supports the activities of various oxidoreductases and ribonucleotide reductases (1, 29) and interacts with a number of additional cytoplasmic proteins through the formation of temporary covalent intermolecular disulphide bonds (32). Consequently, as trxA mutants of E. coli (51), Helicobacter pylori (13), and Rhodobacter sphaeroides (34) show increased sensitivity to hydrogen peroxide, TrxA has been defined as a significant oxidoprotectant. In addition, TrxA possess a protein chaperone function that is disconnected from cysteine interactions (30, 32).Salmonella enterica serovar Typhimurium is closely related to E. coli. During divergent evolution, the Salmonella genome acquired a number of virulence-associated genes (20). Many of these genes are clustered on genetic regions termed Salmonella pathogenicity islands (or SPIs). Of these, SPI1 and SPI2 code for separate type III secretion systems (T3SSs). T3SSs are supramolecular virulence-associated machineries that, in several pathogenic gram-negative bacterial species, enable injection of effector proteins from the bacteria into host cells (22, 57). The effector proteins, in turn, manipulate intrinsic host cell functions to facilitate the infection.The SPI1 T3SS of S. serovar Typhimurium is activated for expression in the intestine in response to increased osmolarity and decreased oxygen tension (22, 57). SPI1 effector proteins are primarily secreted into cells that constitute the epithelial layer and interfere with host cell Cdc42 and Rac-1 signaling and actin polymerization. This enables the bacteria to orchestrate their own actin-dependent uptake into nonphagocytic cells (57). SPI1 effector proteins also induce inflammatory signaling and release of interleukin-1β from infected cells (25, 26).Subsequent systemic progression of S. serovar Typhimurium from the intestinal tissue relies heavily on an ability to survive and replicate in phagocytic cells (18, 46, 53, 54). S. serovar Typhimurium uses an additional set of effector proteins secreted by the SPI2 T3SS for replication inside host cells and for coping with phagocyte innate responses to the infection (10, 11, 54). The functions of SPI2 effectors include diversion of vesicular trafficking, induction of apoptotic responses, and manipulation of ubiquitination of host proteins (28, 40, 45, 53). Hence, SPI2 effector proteins create a vacuolar environment that sustains intracellular replication of S. serovar Typhimurium (28).In addition to pathogenicity islands, the in vivo fitness of Salmonella spp. relies on selected functions shared with other enterobacteria. Thus, many virulence genes are integrated into “housekeeping” gene regulatory networks, coded for by a core genome, which steer bacterial stress responses (12, 17, 27, 55). Selected anabolic pathways also contribute to virulence of S. serovar Typhimurium (18, 27), evidently by providing biochemical building blocks for bacterial replication (36).In S. serovar Typhimurium, TrxA is a housekeeping protein that strongly contributes to virulence in cell culture and mouse infection models (8). However, the mechanism by which TrxA activity adds to virulence has not been defined. Here we show that the contribution of TrxA to virulence of S. serovar Typhimurium associates with its functional integration with the SPI2 T3SS under conditions that prevail in the intracellular vacuolar compartment of the host cell. These findings ascribe a novel role to TrxA in bridging environmental adaptations with virulence gene expression and illuminate a new aspect of the interaction between evolutionary conserved and horizontally acquired gene functions in bacteria.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号