共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Dillon SL Williamson DM Elferich J Radler D Joshi R Thomas G Shinde U 《Journal of molecular biology》2012,423(1):47-62
The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles. 相似文献
4.
5.
6.
7.
目的:探讨mi R-382-3p对骨关节炎软骨细胞增殖和凋亡的影响及其机制。方法:用100 ng/mL的脂多糖(LPS)处理软骨细胞,记为LPS组,以正常培养的软骨细胞作为正常对照(NC)组。mi R-NC、mi R-382-3p、anti-miR-NC、anti-miR-382-3p转染至软骨细胞中,记为mi R-NC组、mi R-382-3p组、anti-miR-NC组、anti-miR-382-3p组;将mi R-NC、mi R-382-3p、si-NC、si-RASA1转染至软骨细胞后再用100 ng/mL的LPS处理,记为mi R-NC+LPS组、mi R-382-3p+LPS组、si-NC+LPS组、si-RASA1+LPS组;将mi R-382-3p分别与pcDNA-NC、pcDNA-RASA1共转染至软骨细胞后再用100 ng/mL的LPS处理,记为mi R-382-3p+pcDNA-NC+LPS组、mi R-382-3p+pcDNA-RASA1+LPS组。实时荧光定量PCR(RT-qPCR)检测mi R-382-3p和Ras p21蛋白活化因子1(RASA1)m RNA表达水平;蛋白质印迹(Western blot)法检测RASA1、细胞周期蛋白D1(CyclinD1)、裂解的半胱氨酸天冬氨酸蛋白酶-3(Cleaved-caspase-3)蛋白表达;四甲基偶氮唑盐比色法(MTT)检测细胞存活率;流式细胞术检测细胞凋亡;荧光素酶报告实验检测mi R-382-3p和RASA1的靶向关系。结果:LPS诱导的软骨细胞中mi R-382-3p表达水平显著降低,RASA1表达水平显著升高,CyclinD1表达水平显著降低,Cleaved-caspase-3表达水平显著升高,细胞存活率显著降低,细胞凋亡率显著升高(P0.05)。过表达mi R-382-3p和敲减RASA1,LPS诱导的软骨细胞中CyclinD1表达水平显著升高,Cleaved-caspase-3表达水平显著降低,细胞存活率显著升高,细胞凋亡率显著降低(P0.05)。mi R-382-3p靶向调控RASA1,高表达RASA1部分逆转了mi R-382-3p高表达对LPS处理的软骨细胞增殖和凋亡的影响。结论:过表达mi R-382-3p促进软骨细胞增殖,抑制LPS诱导的软骨细胞凋亡,其机制可能与RASA1有关。 相似文献
8.
Differential Changes in Levels of mRNAs during Maturation of Wheat Seeds That Are Susceptible and Resistant to Preharvest-Sprouting 总被引:2,自引:0,他引:2
Seed dormancy is strongly related to the physiological conditions,especially as they relate to responsiveness to ABA, of embryocells during maturation of seeds. In this study, seeds of Triticumaestivum L. cv. Chihoku, which showed nondormancy at harvest,and line Kitakei-l354 (referred to as Kitakei), which showedpost-harvest dormancy, were collected 30 days after anthesis(DPA 30) and at the mature stage (DPA 60). Poly(A)+RNA was extractedfrom the embryos of the seeds and translated in a wheat germsystem. The majority of products of translation from the twogenotypes migrated to the same positions in two-dimensionalgels. Levels of six (for polypeptides h, i, k, m, n, and o)out of 14 Chihoku-specific mRNAs decreased dramatically duringseed maturation, concurrently with the loss of dormancy. Bycontrast, levels of 3 (for polypeptides c, e and f) out of 6Kitakei specific mRNAs were maintained during maturation andduring a 48-h imbibition of the dormant seeds but decreasedat germination. Polypeptides n of Chihoku and e of Kitakei hadthe same molecular size and slightly different pI values. Thesetwo polypeptides may be encoded by the same gene and may playsome role in the maintenance of seed dormancy. Levels of mRNAsfor 10 polypeptides, found in both Chihoku and Kitakei embryosat DPA 30, changed to different extents during maturation. Outof the 10 mRNAs, the relative abundance of 4 mRNAs of Kitakeidid not change dramatically during seed maturation, while inChihoku these mRNAs decreased in level or disappeared duringthe same maturation period. In addition, levels of 2 of these4 mRNAs did not decrease significantly during imbibition ofthe dormant Kitakei seeds but disappeared upon treatment forbreaking of dormancy. The maintenance of these mRNAs in thedormant seeds during maturation and imbibition suggests thatthe respective gene products are involved in the maintenanceof dormancy in wheat seeds. (Received December 5, 1991; Accepted April 1, 1992) 相似文献
9.
George A. Lemieux Michael J. Keiser Maria F. Sassano Christian Laggner Fahima Mayer Roland J. Bainton Zena Werb Bryan L. Roth Brian K. Shoichet Kaveh Ashrafi 《PLoS biology》2013,11(11)
Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs. 相似文献
10.
Zichao Zhang Sergio Florez Arthur Gutierrez-Hartmann James F. Martin Brad A. Amendt 《The Journal of biological chemistry》2010,285(45):34718-34728
To understand the role of microRNAs (miRNAs) in pituitary development, a group of pituitary-specific miRNAs were identified, and Dicer1 was then conditionally knocked out using the Pitx2-Cre mouse, resulting in the loss of mature miRNAs in the anterior pituitary. The Pitx2-Cre/Dicer1 mutant mice demonstrate growth retardation, and the pituitaries are hypoplastic with an abnormal branching of the anterior lobe, revealing a role for microRNAs in pituitary development. Growth hormone, prolactin, and thyroid-stimulating hormone β-subunit expression were decreased in the Dicer1 mutant mouse, whereas proopiomelanocortin and luteinizing hormone β-subunit expression were normal in the mutant pituitary. Further analyses revealed decreased Pit-1 and increased Lef-1 expression in the mutant mouse pituitary, consistent with the repression of the Pit-1 promoter by Lef-1. Lef-1 directly targets and represses the Pit-1 promoter. miRNA-26b (miR-26b) was identified as targeting Lef-1 expression, and miR-26b represses Lef-1 in pituitary and non-pituitary cell lines. Furthermore, miR-26b up-regulates Pit-1 and growth hormone expression by attenuating Lef-1 expression in GH3 cells. This study demonstrates that microRNAs are critical for anterior pituitary development and that miR-26b regulates Pit-1 expression by inhibiting Lef-1 expression and may promote Pit-1 lineage differentiation during pituitary development. 相似文献
11.
12.
Barbara Pfister Kuan-Jen Lu Simona Eicke Regina Feil John E. Lunn Sebastian Streb Samuel C. Zeeman 《Plant physiology》2014,165(4):1457-1474
The major component of starch is the branched glucan amylopectin. Structural features of amylopectin, such as the branching pattern and the chain length distribution, are thought to be key factors that enable it to form semicrystalline starch granules. We varied both structural parameters by creating Arabidopsis (Arabidopsis thaliana) mutants lacking combinations of starch synthases (SSs) SS1, SS2, and SS3 (to vary chain lengths) and the debranching enzyme ISOAMYLASE1-ISOAMYLASE2 (ISA; to alter branching pattern). The isa mutant accumulates primarily phytoglycogen in leaf mesophyll cells, with only small amounts of starch in other cell types (epidermis and bundle sheath cells). This balance can be significantly shifted by mutating different SSs. Mutation of SS1 promoted starch synthesis, restoring granules in mesophyll cell plastids. Mutation of SS2 decreased starch synthesis, abolishing granules in epidermal and bundle sheath cells. Thus, the types of SSs present affect the crystallinity and thus the solubility of the glucans made, compensating for or compounding the effects of an aberrant branching pattern. Interestingly, ss2 mutant plants contained small amounts of phytoglycogen in addition to aberrant starch. Likewise, ss2ss3 plants contained phytoglycogen, but were almost devoid of glucan despite retaining other SS isoforms. Surprisingly, glucan production was restored in the ss2ss3isa triple mutants, indicating that SS activity in ss2ss3 per se is not limiting but that the isoamylase suppresses glucan accumulation. We conclude that loss of only SSs can cause phytoglycogen production. This is readily degraded by isoamylase and other enzymes so it does not accumulate and was previously unnoticed.Starch, the major storage carbohydrate in plants, is composed of two α-1,4- and α-1,6-linked glucan polymers: moderately branched amylopectin and predominantly linear amylose. Amylopectin, which constitutes approximately 80% of most starches, is synthesized by three enzyme activities. Starch synthases (SSs) transfer the glucosyl moiety of ADP-Glc to a glucan chain, forming a new α-1,4 glucosidic linkage, extending the linear chains. Branching enzymes (BEs) cleave some α-1,4 linkages and reattach chains of six Glc units or more via α-1,6 linkages, creating branch points. Debranching enzymes (DBEs) hydrolyze some of these branches, tailoring the structure of the polymer. However, the way in which the individual enzymes work together to create crystallization-competent amylopectin remains unclear.The coordinated actions of SSs, BEs, and DBEs are thought to produce a glucan with a tree-like architecture in which the branch points are nonrandomly positioned. According to models of amylopectin, clusters of unbranched chain segments are formed. Within these clusters, adjacent chains form double helices, which align in parallel giving rise to crystalline lamellae. These alternate with amorphous lamellae containing the branch points and chain segments that span the clusters (Zeeman et al., 2010). In the context of this amylopectin model, glucan chains can be categorized according to their length and connection to other chains. The A chains are external chains that do not carry other branches. The B chains carry one or more branches (either an A chain or another B chain) and have both external and internal segments. The B chains can span one or more clusters (e.g. a B1 chain spans one cluster). The C chain is the single chain that has a reducing end (Manners, 1989). The A chains tend to be the shortest, having an average chain length (ACL) of 12 to 16, depending on the species (Hizukuri, 1986). Together with the B1 chains, the A chains are thought to make up the crystalline clusters. Longer chains such as B2 chains (ACL 20–24) or B3 chains (ACL 42–48) are presumed to connect clusters (Hizukuri, 1986). Amylose is a distinct polymer synthesized within the amylopectin matrix by granule-bound SS (Tatge et al., 1999). Mutants lacking granule-bound SS also lack amylose but still make starch granules, showing that amylose synthesis is not required for this (Zeeman et al., 2010).The structural properties of amylopectin contrast with those of glycogen, the Glc polymer synthesized in organisms such as fungi, animals, and most bacteria. Glycogen also consists of α-1,4-linked Glc chains with α-1,6-linked branches, but differs in three major ways from amylopectin. First, its external branches are considerably shorter (6–8 Glc units compared with 12–16 in amylopectin). Second, the branch frequency (10%) is twice as high as in amylopectin. Third, its branch points are assumed to be distributed homogeneously, whereas branching in amylopectin is thought to be nonhomogeneous. These differences prevent the formation and parallel alignment of double helices in glycogen, rendering it soluble. Glycogen synthesis requires only a single glycogen synthase enzyme and a single glycogen BE, whereas several SS and BE isoforms are involved in amylopectin synthesis. In Arabidopsis (Arabidopsis thaliana), there are four SSs (SS1–SS4) and two BEs (BE2 and BE3; Li et al., 2003; Streb and Zeeman, 2012). In addition, Arabidopsis has three DBEs. ISOAMYLASE1-ISOAMYLASE2 (hereafter referred to simply as ISA), a heteromultimeric enzyme composed of the two subunits ISA1 and ISA2, is implicated in amylopectin synthesis (Delatte et al., 2005). The other two DBEs, ISA3 and LIMIT DEXTRINASE (LDA), are implicated in starch degradation (Delatte et al., 2006).Loss of specific SS isoforms has different effects on the starch amount, amylopectin chain length distribution (CLD), and starch granule morphology, suggesting distinct functions for each isoform. For example, amylopectin from SS1-deficient mutants of Arabidopsis (Delvallé et al., 2005; Szydlowski et al., 2011) and rice (Oryza sativa; Fujita et al., 2006) has fewer chains with a degree of polymerization (DP; i.e. chain length) between 8 and 12 and more chains with a DP between 17 and 20 compared with the wild-type starches. This is consistent with in vitro data for the maize (Zea mays; Commuri and Keeling, 2001) and rice SSI enzymes (Fujita et al., 2006), which preferentially elongate short chains of DP 6 or 7 up to a length of DP 10. This indicates that SSI functions to elongate the short chains created by BEs by a few Glc units (Commuri and Keeling, 2001; Delvallé et al., 2005). Comparable studies in SS2-deficient mutants reveal amylopectin with more chains with DP 6 to 11, but depletion in chains with DP 13 to 20 compared with the corresponding wild-type amylopectins. Thus, SS2 is suggested to elongate shorter chains (e.g. those made by SS1) to a length of between DP 13 and 20 (Edwards et al., 1999; Yamamori et al., 2000; Umemoto et al., 2002; Morell et al., 2003; Zhang et al., 2004, 2008). SS3 was proposed to be important for the generation of long, cluster-spanning chains (Jeon et al., 2010; Tetlow and Emes, 2011), as well as contributing to A chain and B1 chain elongation (Edwards et al., 1999; Zhang et al., 2005, 2008). By contrast, SS4 appears to have a specialized role in initiating or coordinating granule formation (Roldán et al., 2007; Crumpton-Taylor et al., 2012, 2013). Arabidopsis ss4 mutants have just one round starch granule per chloroplast rather than five or more lenticular granules observed in the wild type.Partial loss of BE activity in maize (Stinard et al., 1993), rice (Mizuno et al., 1993), and potato (Solanum tuberosum; Schwall et al., 2000) leads to starches with high apparent amylose, most likely caused by the accumulation of less frequently branched amylopectin. A total lack of branching activity in Arabidopsis be2be3 mutants, however, abolishes starch production. Instead, maltose accumulates, suggesting that linear glucans are produced, but degraded by α- and β-amylases (Dumez et al., 2006).Loss of DBE of the ISA1 class causes a dramatic phenotype, with production of a soluble glucan (phytoglycogen) in place of starch. This has been observed in starch-synthesizing tissues of several species, including Chlamydomonas reinhardtii cells (Mouille et al., 1996), Arabidopsis leaves (Delatte et al., 2005; Wattebled et al., 2005), and the endosperms of maize (Zea Mays; James et al., 1995), rice (Oryza sativa; Nakamura et al., 1997), and barley (Hordeum vulgare) seeds (Burton et al., 2002). Phytoglycogen has structural similarities to glycogen in that both are water soluble and have a higher branch frequency than amylopectin. Accordingly, it was proposed that the trimming of glucans produced by SS and BE isoforms by ISA1 removes branches that interfere with the formation of secondary and tertiary structures (i.e. organized arrays of double helices), thereby facilitating amylopectin biosynthesis and crystallization (Ball et al., 1996). Compared with ISA1, the other two DBEs (LDA and ISA3) have different substrate specificities, both preferring substrates with short outer chains, such as β-limit dextrins, suggesting that their role is primarily in starch degradation. Consistently, mutating these genes in Arabidopsis causes a starch-excess phenotype rather than phytoglycogen accumulation (Delatte et al., 2006).Although it is now widely accepted that a degree of debranching occurs to control branch number and positioning in amylopectin, the importance of this for crystalline starch production is still uncertain. Several studies have shown that some cell types in isa1-deficient mutants still produce some starch (e.g. epidermal and bundle sheath cells in Arabidopsis mutants; Delatte et al., 2005), indicating that other factors can also affect the partitioning between phytoglycogen and starch.No starch granules are made in the Arabidopsis isa1isa2isa3lda quadruple mutant, which lacks all three DBEs (Streb et al., 2008). Although suggestive of redundancy between the DBEs, the loss of each enzyme has distinct effects on amylopectin or phytoglycogen structure, consistent with their different substrate specificities. Furthermore, the loss of starch granules in isa1isa2isa3lda was shown to be at least partly due to the actions of α-amylase; typical α-amylolytic products (short malto-oligosaccharides) accumulated alongside phytoglycogen. Mutation of the gene encoding the chloroplastic α-AMYLASE3 (AMY3) eliminated these short malto-oligosaccharides and restored starch granule biosynthesis in all cell types examined. This unexpected result showed that crystalline glucans can be produced in the absence of DBE activity, despite an altered branching pattern. Streb et al. (2008) proposed that AMY3 shortens external chains of the glucans made by SSs and BEs so that they cannot form double helices with their neighbors. This idea is consistent with models for amylopectin, in which a suitable CLD is a critical factor in the formation of the secondary and higher-order crystalline structures (Gidley and Bulpin, 1987; Pfannemüller, 1987). Thus, factors that affect the CLD, such as a failure to sufficiently elongate new branches or concomitant chain degradation by amylases, should also affect crystallinity. Indeed, early studies of maize mutants (that were subsequently shown to be affected in DBE and SS activities) reported that loss of SS in a DBE mutant background altered the ratio of starch to phytoglycogen compared with the DBE mutants alone (Cameron and Cole, 1954; Creech, 1965).The aim of this work was to use genetics to systematically vary both branch point position and chain lengths and determine the impact on glucan amount, structure, and starch granule formation in Arabidopsis. We analyzed mutants lacking combinations of SSs (to vary chain lengths) in the absence of the debranching enzyme ISA1-ISA2 (to change branch point distribution/frequency). This revealed that the length of external chains is a key factor in the production of a crystallization-competent glucan. Remarkably, our results also provide evidence for phytoglycogen production due to mutations just in SSs. Our results indicate that this phenomenon is largely masked by the presence of ISA1-ISA2, which degrades the aberrant glucan instead of trimming it to amylopectin. 相似文献
13.
Kendra A. Batchelder Aaron B. Tanenbaum Seth Albert Lyne Guimond Pierre Kestener Alain Arneodo Andre Khalil 《PloS one》2014,9(9)
The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the “CC-MLO fractal dimension plot”, where a “fractal zone” and “Euclidean zones” (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue. 相似文献
14.
The 14-3-3 family of proteins is widely distributed in the CNS where they are major regulators of essential neuronal functions. There are seven known mammalian 14-3-3 isoforms (ζ,, τ, ϵ, η, β, and σ), which generally function as adaptor proteins. Previously, we have demonstrated that 14-3-3ϵ isoform dynamically regulates forward trafficking of GluN2C-containing NMDA receptors (NMDARs) in cerebellar granule neurons, that when expressed on the surface, promotes neuronal survival following NMDA-induced excitotoxicity. Here, we report 14-3-3 isoform-specific binding and functional regulation of GluN2C. In particular, we show that GluN2C C-terminal domain (CTD) binds to all 14-3-3 isoforms except 14-3-3σ, and binding is dependent on GluN2C serine 1096 phosphorylation. Co-expression of 14-3-3 (ζ and ϵ) and GluN1/GluN2C promotes the forward delivery of receptors to the cell surface. We further identify novel residues serine 145, tyrosine 178, and cysteine 189 on α-helices 6, 7, and 8, respectively, within ζ-isoform as part of the GluN2C binding motif and independent of the canonical peptide binding groove. Mutation of these conserved residues abolishes GluN2C binding and has no functional effect on GluN2C trafficking. Reciprocal mutation of alanine 145, histidine 180, and isoleucine 191 on 14-3-3σ isoform promotes GluN2C binding and surface expression. Moreover, inhibiting endogenous 14-3-3 using a high-affinity peptide inhibitor, difopein, greatly diminishes GluN2C surface expression. Together, these findings highlight the isoform-specific structural and functional differences within the 14-3-3 family of proteins, which determine GluN2C binding and its essential role in targeting the receptor to the cell surface to facilitate glutamatergic neurotransmission. 相似文献
15.
16.
17.
Adolescence is a developmental period characterized by heightened vulnerability to illicit drug use and the onset of neuropsychiatric disorders. These clinical phenomena likely share common neurobiological substrates, as mesocorticolimbic dopamine systems actively mature during this period. Whereas prior studies have examined age-dependent changes in dopamine receptor binding, there have been fewer functional analyses. The aim of the present study was therefore to determine whether the functional consequences of D1 and D2-like activation are age-dependent. Adolescent and adult rats were given direct D1 and D2 agonists, alone and in combination. Locomotor and stereotypic behaviors were measured, and brains were collected for analysis of mRNA expression for the immediate early genes (IEGs), cfos and arc. Adolescents showed enhanced D2-like receptor control of locomotor and repetitive behaviors, which transitioned to dominant D1-like mechanisms in adulthood. When low doses of agonists were co-administered, adults showed supra-additive behavioral responses to D1/D2 combinations, whereas adolescents did not, which may suggest age differences in D1/D2 synergy. D1/D2-stimulated IEG expression was particularly prominent in the bed nucleus of the stria terminalis (BNST). Given the BNST’s function as an integrator of corticostriatal, hippocampal, and stress-related circuitry, and the importance of neural network dynamics in producing behavior, an exploratory functional network analysis of regional IEG expression was performed. This data-driven analysis demonstrated similar developmental trajectories as those described in humans and suggested that dopaminergic drugs alter forebrain coordinated gene expression age dependently. D1/D2 recruitment of stress nuclei into functional networks was associated with low behavioral output in adolescents. Network analysis presents a novel tool to assess pharmacological action, and highlights critical developmental changes in functional neural circuitry. Immature D1/D2 interactions in adolescents may underlie their unique responses to drugs of abuse and vulnerability to psychopathology. These data highlight the need for age-specific pharmacotherapy design and clinical application in adolescence. 相似文献
18.
19.
We investigated the effect of methamphetamine (MA) injections on the circadian organization of behavior and individual tissues in the mouse. Scheduled, daily injections of MA resulted in anticipatory activity, with an increase in locomotor activity immediately prior to the time of injection. Daily MA also shifted the peak time of PER2 expression in the liver, pituitary, and salivary glands. It has been suggested that reward pathways, and dopamine signaling in particular, may underlie the effects of MA on the circadian system. To test this hypothesis, we examined the effect of the D1 receptor antagonist (SCH) on circadian rhythms. The MA-induced shift in the phase of pituitary and salivary glands was attenuated by pretreatment with the D1 antagonist SCH23390 (SCH). Interestingly, daily SCH, administered alone, also affected some circadian oscillators. The livers and lungs (but not pituitaries or salivary glands) of mice treated with daily injections of SCH displayed disrupted rhythms of PER2 expression, suggesting that D1 receptor signaling is important for entrainment of these organs. From these results, we conclude that MA has widespread effects within the circadian system, and that these effects are mediated, at least in part, by the dopaminergic system. This study also identifies a role for dopamine signaling in normal entrainment of circadian oscillators. SCH23390相似文献