首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hippocampal formation (HF) plays an important role to facilitate higher order cognitive functions. Cholinergic activation of heteromeric nicotinic acetylcholine receptors (nAChRs) within the HF is critical for the normal development of principal neurons within this brain region. However, previous research investigating the expression and function of heteromeric nAChRs in principal neurons of the HF is limited to males or does not differentiate between the sexes. We used whole‐cell electrophysiology to show that principal neurons in the CA1 region of the female mouse HF are excited by heteromeric nAChRs throughout postnatal development, with the greatest response occurring during the first two weeks of postnatal life. Excitability responses to heteromeric nAChR stimulation were also found in principal neurons in the CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI (ECVI) of young postnatal female HF. A direct comparison between male and female mice found that principal neurons in ECVI display greater heteromeric nicotinic passive and active excitability responses in females. This sex difference is likely influenced by the generally more excitable nature of ECVI neurons from female mice, which display a higher resting membrane potential, greater input resistance, and smaller afterhyperpolarization potential of medium duration (mAHP). These findings demonstrate that heteromeric nicotinic excitation of ECVI neurons differs between male and female mice during a period of major circuitry development within the HF, which may have mechanistic implications for known sex differences in the development and function of this cognitive brain region.  相似文献   

2.

Background

Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume.

Methods

A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI.

Results

We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups.

Conclusions

The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.  相似文献   

3.

Objective

Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY) and suppressor proopiomelanocortin (POMC) in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD) consumption are unclear.

Research Design and Methods

Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control). At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid) metabolic markers were measured.

Results

Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain.

Conclusions

Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanims. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.  相似文献   

4.
5.
6.

Background

The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration.

Methodology/Principal Findings

To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology.

Conclusions/Significance

Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle.  相似文献   

7.
Zhao DQ  Ai HB 《PloS one》2011,6(8):e23362

Aims

Vasopressin (AVP) and oxytocin (OT) are considered to be related to gastric functions and the regulation of stress response. The present study was to study the role of vasopressinergic and oxytocinergic neurons during the restraint water-immersion stress.

Methods

Ten male Wistar rats were divided into two groups, control and RWIS for 1h. The brain sections were treated with a dual immunohistochemistry of Fos and oxytocin (OT) or vasopressin (AVP) or OT receptor or AVP 1b receptor (V1bR).

Results

(1) Fos-immunoreactive (Fos-IR) neurons dramatically increased in the hypothalamic paraventricular nucleus (PVN), the supraoptic nucleus (SON), the neucleus of solitary tract (NTS) and motor nucleus of the vagus (DMV) in the RWIS rats; (2) OT-immunoreactive (OT-IR) neurons were mainly observed in the medial magnocellular part of the PVN and the dorsal portion of the SON, while AVP-immunoreactive (AVP-IR) neurons mainly distributed in the magnocellular part of the PVN and the ventral portion of the SON. In the RWIS rats, Fos-IR neurons were indentified in 31% of OT-IR neurons and 40% of AVP-IR neurons in the PVN, while in the SON it represented 28%, 53% respectively; (3) V1bR-IR and OTR-IR neurons occupied all portions of the NTS and DMV. In the RWIS rats, more than 10% of OTR-IR and V1bR-IR neurons were activated in the DMV, while lower ratio in the NTS.

Conclusion

RWIS activates both oxytocinergic and vasopressinergic neurons in the PVN and SON, which may project to the NTS or DMV mediating the activity of the neurons by OTR and V1bR.  相似文献   

8.

Objective

The effects of growth hormone on cognitive dysfunction were observed in a controlled cortical impact (CCI) rat model and the underlying mechanism was explored.

Method

Three-month-old male SD rats were randomly divided into sham (n = 10), control (n = 10), and CCI groups (n = 40) The parameters were set as follows: striking speed, 3.5 m/s; impact depth, 1.5 mm; and dwell time, 400 msec. Eight and ten weeks post-injury, the GH levels were measured the water maze test and novel object recognition test were performed. CCI rats were divided into normal and decreased GH groups, and further randomly divided into two sub-groups (rhGH treatment and saline vehicle groups). All rats were tested for SYN, BDNF, and TrkB mRNA in the prefrontal cortex and hippocampus by RT-PCR.

Results

CCI rats 8 weeks post-injury had cognitive dysfunction regardless of the GH level (P<0.05). rhGH treatment improved cognitive function in CCI rats. There was a positive correlation between the expression of prefrontal BDNF and SYN mRNA in CCI rats after rhGH therapy and the water maze test score (r = 0.773 and 0.534, respectively; P<0.05). Furthermore, the expression of BDNF, TrkB, and SYN mRNA in the hippocampus was negatively correlated with the water maze test score (r = 0.602, 0.773, 0.672, and 0.783, respectively; P<0.05). There was a difference in the expression of hippocampal and prefrontal BDNF, TrkB, and SYN mRNA (P<0.05)

Conclusion

rhGH treatment had a positive effect on cognitive function, which was more evident in GH-deficient rats. The increased expression of hippocampal and prefrontal BDNF and TrkB mRNA is implicated in rhGH therapy to improve cognitive function. Changes in the expression of hippocampal SYN mRNA following rhGH therapy may also play a role in improving cognitive function.  相似文献   

9.
10.

Background

Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB).

Methodology/Principal Findings

We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.

Conclusions/Significance

These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression.  相似文献   

11.

Purpose

Controlled cortical impact (CCI) models in adult and aged Sprague-Dawley (SD) rats have been used extensively to study medial prefrontal cortex (mPFC) injury and the effects of post-injury progesterone treatment, but the hormone''s effects after traumatic brain injury (TBI) in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.

Methods

Twenty-eight-day old (PND 28) male Sprague Dawley rats received sham (n = 24) or CCI (n = 47) injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight) or vehicle injections on post-injury days (PID) 1–7, subjected to behavioral testing from PID 9–27, and analyzed for lesion size at PID 28.

Results

The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.

Conclusion

Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.  相似文献   

12.
Wu XM  Hu CP  Li XZ  Zou YQ  Zou JT  Li YY  Feng JT 《PloS one》2011,6(5):e20337

Background

Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown.

Methodology/Principal Findings

This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3) to postnatal day 60 (P60). Asthmatic pregnant rats (AP), nerve growth factor (NGF)-treated pregnant rats (NP) and NGF antibody-treated pregnant rats (ANP) were sensitized and challenged with ovalbumin (OVA); NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP), offspring from AP (OAP), offspring from NP (ONP), and offspring from ANP (OANP). The expressions of phenylethanolamine N-methyltransferase (PNMT) protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI), corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC) were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP.

Conclusion/Significance

Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation.  相似文献   

13.

Background

Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD) deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats.

Methods

Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT) and the 5 choice continuous performance task (5C-CPT) and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS) task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum.

Results

AVD-deficient rats were deficient in vitamin D3 (<10 nM) and had normal calcium and phosphate levels after 8–10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI) than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA) responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum.

Conclusions

AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.  相似文献   

14.

Background

Internet addiction has become increasingly recognized as a mental disorder, though its neurobiological basis is unknown. This study used functional neuroimaging to investigate whole-brain functional connectivity in adolescents diagnosed with internet addiction. Based on neurobiological changes seen in other addiction related disorders, it was predicted that connectivity disruptions in adolescents with internet addiction would be most prominent in cortico-striatal circuitry.

Methods

Participants were 12 adolescents diagnosed with internet addiction and 11 healthy comparison subjects. Resting-state functional magnetic resonance images were acquired, and group differences in brain functional connectivity were analyzed using the network-based statistic. We also analyzed network topology, testing for between-group differences in key graph-based network measures.

Results

Adolescents with internet addiction showed reduced functional connectivity spanning a distributed network. The majority of impaired connections involved cortico-subcortical circuits (∼24% with prefrontal and ∼27% with parietal cortex). Bilateral putamen was the most extensively involved subcortical brain region. No between-group difference was observed in network topological measures, including the clustering coefficient, characteristic path length, or the small-worldness ratio.

Conclusions

Internet addiction is associated with a widespread and significant decrease of functional connectivity in cortico-striatal circuits, in the absence of global changes in brain functional network topology.  相似文献   

15.

Background

Human males are more vulnerable to adverse conditions than females starting early in gestation and continuing throughout life, and previous studies show that severe food restriction can influence the sex ratios of human births. It remains unclear, however, whether subtle differences in caloric intake during gestation alter survival of fetuses in a sex-specific way. I hypothesized that the ratio of male to female babies born should vary with the amount of weight gained during gestation. I predicted that women who gain low amounts of weight during gestation should produce significantly more females, and that, if gestational weight gain directly influences sex ratios, fetal losses would be more likely to be male when women gain inadequate amounts of weight during pregnancy.

Methods

I analyzed data collected from over 68 million births over 23 years to test for a relationship between gestational weight gain and natal sex ratios, as well as between gestational weight gain and sex ratios of fetal deaths at five gestational ages.

Results

Gestational weight gain and the proportion of male births were positively correlated; a lower proportion of males was produced by women who gained less weight and this strong pattern was exhibited in four human races. Further, sex ratios of fetal losses at 6 months of gestation were significantly male-biased when mothers had gained low amounts of weight during pregnancy, suggesting that low caloric intake during early fetal development can stimulate the loss of male fetuses.

Conclusion

My data indicate that human sex ratios change in response to resource availability via sex-specific fetal loss, and that a pivotal time for influences on male survival is early in fetal development, at 6 months of gestation.  相似文献   

16.

Background

Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect). It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1) amygdala over-activity and 2) reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states.

Methods

Here we used resting-state arterial spin labeling (ASL) and blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF) and functional connectivity (correlated fluctuations in the BOLD signal) of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA), and subsyndromal anxiety levels in 38 healthy subjects.

Results

BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety.

Conclusions

These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach.  相似文献   

17.

Purpose

Biological sex and age are considered as two important factors that may influence the function and structure of the retina, an effect that might be governed by sexual hormones such as estrogen. The purpose of this study was to delineate the influence that biological sex and age exert on the retinal function and structure of rodents and also clarify the effect that the estrus cycle might exert on the retinal function of female rats.

Method

The retinal function of 50 normal male and female albino Sprague-Dawley (SD) rats was investigated with the electroretinogram (ERG) at postnatal day (P) 30, 60, 100, 200, and 300 (n = 5–6 male and female rats/age). Following the ERG recording sessions, retinal histology was performed in both sexes. In parallel, the retinal function of premenopausal and menopausal female rats aged P540 were also compared.

Results

Sex and age-related changes in retinal structure and function were observed in our animal model. However, irrespective of age, no significant difference was observed in ERG and retinal histology obtained from male and female rats. Notwithstanding the above we did however notice that between P60 and P200 there was a gradual increase in ERG amplitudes of female rats compared to males. Furthermore, the ERG of premenopausal female rats aged 18 months old (P540) was larger compared to age-matched menopausal female rats as well as that of male rats.

Conclusion

Our results showed that biological sex and age can influence the retinal function and structure of albino SD rats. Furthermore, we showed that cycled female rats have better retinal function compared to the menopausal female rats suggesting a beneficial effect of the estrus cycle on the retinal function.  相似文献   

18.

Purpose

The present study examined sex differences in the sweat gland response to acetylcholine (ACh) in physically trained and untrained male and female subjects.

Methods

Sweating responses were induced on the forearm and thigh in resting subjects by ACh iontophoresis using a 10% solution at 2 mA for 5 min at 26°C and 50% relative humidity.

Results

The ACh-induced sweating rate (SR) on the forearm and thigh was greater in physically trained male (P < 0.001 for the forearm and thigh, respectively) and female (P = 0.08 for the forearm, P < 0.001 for the thigh) subjects than in untrained subjects of both sexes. The SR was also significantly greater in physically trained males compared to females at both sites (P < 0.001) and in untrained males compared to females on the thigh (P < 0.02) only, although the degree of difference was greater in trained subjects than in untrained subjects. These sex differences can be attributed to the difference in sweat output per gland rather than the number of activated sweat glands.

Conclusion

We conclude that physical training enhances the ACh-induced SR in both sexes but that the degree of enhancement is greater in male than in female subjects. The effects of physical training and sex on the SR may be due to changes in peripheral sensitivity to ACh and/or sweat gland size.  相似文献   

19.
Vyleta NP  Smith SM 《PloS one》2008,3(9):e3155

Background

Caffeine stimulates calcium-induced calcium release (CICR) in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release.

Methodology/Principal Findings

Using the whole-cell patch-clamp technique we found that caffeine (20 mM) reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM) did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors.

Conclusions/Significance

Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.  相似文献   

20.

Background

A precise balance exists between the actions of endogenous glucocorticoids (GC) and retinoids to promote normal lung development, in particular during alveolarization. The mechanisms controlling this balance are largely unknown, but recent evidence suggests that midkine (MK), a retinoic acid-regulated, pro-angiogenic growth factor, may function as a critical regulator. The purpose of this study was to examine regulation of MK by GC and RA during postnatal alveolar formation in rats.

Methods

Newborn rats were treated with dexamethasone (DEX) and/or all-trans-retinoic acid (RA) during the first two weeks of life. Lung morphology was assessed by light microscopy and radial alveolar counts. MK mRNA and protein expression in response to different treatment were determined by Northern and Western blots. In addition, MK protein expression in cultured human alveolar type 2-like cells treated with DEX and RA was also determined.

Results

Lung histology confirmed that DEX treatment inhibited and RA treatment stimulated alveolar formation, whereas concurrent administration of RA with DEX prevented the DEX effects. During normal development, MK expression was maximal during the period of alveolarization from postnatal day 5 (PN5) to PN15. DEX treatment of rat pups decreased, and RA treatment increased lung MK expression, whereas concurrent DEX+RA treatment prevented the DEX-induced decrease in MK expression. Using human alveolar type 2 (AT2)-like cells differentiated in culture, we confirmed that DEX and cAMP decreased, and RA increased MK expression.

Conclusion

We conclude that MK is expressed by AT2 cells, and is differentially regulated by corticosteroid and retinoid treatment in a manner consistent with hormonal effects on alveolarization during postnatal lung development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号