首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Malaria, one of the most problematic infectious diseases worldwide, is on the rise. The absence of an effective vaccine and the spread of drug-resistant strains of Plasmodium clearly indicate the necessity for the development of new chemotherapeutic agents and the identification of novel targets. The recent discovery of a relict, non-photosynthetic plastid-like organelle, the so-called apicoplast, in Plasmodium has opened up new avenues in malaria research. It also initiated the Plasmodium falciparum genome sequencing project, which revealed a number of biochemical pathways previously unknown to Plasmodium, i.e. cytosolic shikimate pathway, apicoplastic type II fatty acid, non-mevalonate isoprene and haem biosyntheses. Since these vital biosynthetic processes are absent in humans or fundamentally different from those found in humans, they represent excellent targets for pharmaceutical interventions. We are interested in the type II fatty acid synthase (FAS II) system of malaria parasite and focus on the FabI enzyme, the only known enoyl-ACP reductase in Plasmodium involved in the final reduction step of the fatty acid chain elongation cycle. Here we describe the general aspects of fatty acid biosynthesis, its essentiality to the malaria parasite and our continuing efforts to discover in Turkish medicinal plants natural antimalarial agents, which specifically target the plasmodial FabI enzyme.Phytochemical Society of Europe (PSE)-Pierre Fabre Prize 2004 Lecture  相似文献   

3.
4.
Hypochlorous acid reacts with the model iron(II) complex, ferrocyanide (Fe(CN)64-) in aqueous solution with the rate constant 220 ± 15 dm3 mol-1 s-1. Free hydroxyl radicals are formed in this reaction in 27% yield as shown by the hydroxylation of benzoate to give a product distribution identical to that of free (radiolytically generated) hydroxyl radicals. This reaction is three orders of magnitude faster than the analogous reaction involving hydrogen peroxide (the Fenton reaction), suggesting that the hypochlorous acid generated by activated neutrophils may be a source of hydroxyl radicals.  相似文献   

5.
Kuo TM  Kim H  Hou CT 《Current microbiology》2001,43(3):198-203
The production and its potential use of a novel trihydroxy unsaturated fatty acid, 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD), were investigated. TOD was formed by Pseudomonas aeruginosa PR3 (NRRL B-18602) in a culture supplied with exogenous ricinoleic acid. The yield of TOD production was always higher in a rich culture medium than in minimal screening medium. Extending the conversion time from 48 to 72 h prior to lipid extraction led to a 65% reduction in yield, indicating that TOD was further metabolized by strain PR3 and that control of reaction time is important to achieving a maximum yield. The optimum culture density, reaction time, pH, temperature, and substrate concentration for the production of TOD were: 20–24 h culture growth, 48 h, 7.0, 25°C, and 1% (vol/vol), respectively. Under optimum conditions, the yield of TOD production was greater than 45%. TOD was found to be an antifungal agent most active against the fungus that causes blast disease in rice plants, the most important fungal disease affecting rice production worldwide. Received: 4 January 2001/Accepted: 6 February 2001  相似文献   

6.
STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode.  相似文献   

7.
《PloS one》2015,10(2)
BackgroundFew epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.MethodsBaseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region.ResultsIn women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend<.0001). In men, a trend was observed for doubling elaidic acid level and risk of weight loss (OR = 0.82, 95% CI = 0.66-1.01, p = 0.062) while no significant association was found with risk of weight gain during the 5-year follow-up (OR = 1.08, 95% CI = 0.88-1.33, p = 0.454). No association was found for saturated and cis-monounsaturated fatty acids.ConclusionsThese data suggest that a high intake of industrial trans fatty acids may decrease the risk of weight loss, particularly in women. Prevention of obesity should consider limiting the consumption of highly processed foods, the main source of industrially-produced trans fatty acids.  相似文献   

8.
Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.  相似文献   

9.
The naturally occurring (–)-enantiomer of a fatty acid isolated from the mushroom (Hericium erinaceum) was synthesized from (R)-(–)-benzyl glycidyl ether in 8 steps. A comparison of the specific rotation of the synthetic sample with that of the natural compound established the absolute configuration of the latter.  相似文献   

10.
Alcoholic solutions of sulfosalicylic acid, trichloracetic acid and Hofker's solution fixed mammalian spinal cord with less shrinkage than ammoniated alcohol, but during the necessary alkalinization, washing, and silvering, the acid fixed specimens shrank more than those fixed in the alkaline alcohol. Specimens fixed in Carnoy's fluid shrank most. Successful silver stains were obtained after all the fixatives.  相似文献   

11.
The aim of this study was to evaluate the use of serum type II collagen cleavage epitope and serum hyaluronic acid as biomarkers for treatment monitoring in osteoarthritic dogs. For this purpose, a treatment model based on mesenchymal stem cells derived from adipose tissue combined with plasma rich in growth factors was used. This clinical study included 10 dogs with hip osteoarthritis. Both analytes were measured in serum at baseline, just before applying the treatment, and 1, 3, and 6 months after treatment. These results were compared with those obtained from force plate analysis using the same animals during the same study period. Levels of type II collagen cleavage epitope decreased and those of hyaluronic acid increased with clinical improvement objectively verified via force plate analysis, suggesting these two biomarkers could be effective as indicators of clinical development of joint disease in dogs.  相似文献   

12.
We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C20 fatty acids to form C60-to-C90 mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Δ cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Δ cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C4 to C8) than was previously thought (>C12). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.  相似文献   

13.
The homothallic ascomycete Aspergillus nidulans serves as model organism for filamentous fungi because of its ability to propagate with both asexual and sexual life cycles, and fatty acid-derived substances regulate the balance between both cycles. These so-called psi (precocious sexual inducer) factors are produced by psi factor-producing oxygenases (Ppo enzymes). Bioinformatic analysis predicted the presence of two different heme domains in Ppo proteins: in the N-terminal region, a fatty acid heme dioxygenase/peroxidase domain is predicted, whereas in the C-terminal region, a P450 heme thiolate domain is predicted. To analyze the reaction catalyzed by Ppo enzymes, PpoA was expressed in Escherichia coli as an active enzyme. The protein was purified by 62-fold and identified as a homotetrameric ferric heme protein that metabolizes mono- as well as polyunsaturated C16 and C18 fatty acids at pH ∼7.25. The presence of thiolate-ligated heme was confirmed on the basis of sequence alignments and the appearance of a characteristic 450 nm CO-binding spectrum. Studies on its reaction mechanism revealed that PpoA uses different heme domains to catalyze two separate reactions. Within the heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid by abstracting a H-atom from C-8 of the fatty acid, yielding a carbon-centered radical that reacts with molecular dioxygen. In the second reaction step, 8-hydroperoxyoctadecadienoic acid is isomerized within the P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. We identify PpoA as a bifunctional P450 fusion protein that uses a previously unknown reaction mechanism for forming psi factors.The fungus Aspergillus nidulans (teleomorph Emericella nidulans) is a homothallic ascomycete that has a defined sexual and asexual developmental cycle. Therefore, it serves as a model system for the understanding of fungal development (1). Oxidized unsaturated fatty acids, so-called oxylipins, derived from endogenous fatty acids were found to influence the development of the asexual conidiophores and sexual cleistothecia (26). Moreover, they seem to regulate the secondary metabolism of the fungus (7). These substances were collectively named psi factors and are primarily a mixture of hydroxylated oleic (18:1Δ9Z; x:yΔz denotes a fatty acid with x carbons and y double bonds in position z counting from the carboxyl end), linoleic (18:2Δ9Z,12Z), and α-linolenic (18:3Δ9Z,12Z,15Z) acids. They are termed psiβ, psiα, and psiγ, respectively. Psi factors can be further classified by the number and positioning of hydroxy groups on the fatty acid backbone: psiB (OH at C-8, e.g. (8R)-HODE),2 psiA (OH at C-5 and C-8, e.g. (5S,8R)-DiHODE), and psiC (OH at C-8 and the δ-lactone ring) (8, 9).The psi factor (8R)-HODE was first discovered in the fungus Laetisaria arvalis (10, 11); it was later also found in Gaeumannomyces graminis (12, 13), where the first enzyme, which is responsible for production of (8R)-HPODE, 7,8-LDS, was detected (13). This heme-containing enzyme is bifunctional because it oxidizes 18:2Δ9Z,12Z in a first reaction step to (8R)-HPODE and subsequently isomerizes this intermediate compound to (7S,8S)-DiHODE (1315).After the genome of A. nidulans was available, Keller and co-workers (6, 16, 17) found three genes that share a high homology with the sequence of 7,8-LDS, namely ppoA, ppoB, and ppoC. They showed that the deletion of these genes had a significant effect (i) on the developmental ratio between the asexual conidiospores and sexual ascospores; (ii) on the production of psi factors; and (iii) on the production of secondary metabolites, the mycotoxins (6, 7, 16, 17). Furthermore, the encoded proteins showed remarkable sequence homology to both mammalian PGHS isoforms, enzymes that are responsible for the synthesis of prostaglandins (18). Using the NCBI conserved domain search analysis tool, it turned out that ppoA amino acid residues 210–580 contain a domain similar to mammalian heme peroxidases, whereas residues 650–1050 contain a CYPX domain, similar to P450 heme thiolate enzymes (16). However, for 7,8-LDS from G. graminis, only the mammalian heme peroxidase domain is predicted. The identity of conserved catalytic domains between Ppo enzymes and mammalian PGHS ranges from 25 to 29% for PGHS-2 and from 25 to 26% for PGHS-1 (19). PpoA and 7,8-LDS show 42% amino acid identity.Oliw and co-workers (20) observed that incubation of homogenates of mycelia of A. nidulans with 18:2Δ9Z,12Z converted the fatty acid to (8R)-HODE and (5S,8R)-DiHODE as the major products. (8R)-HPODE, (10R)-HODE, and (10R)-HPODE were detected as minor products. Incubation of mycelia of Aspergillus fumigatus with deuterium-labeled 18:2Δ9Z,12Z revealed that the synthesis of (8R)-HPODE is accomplished via pro-S-hydrogen abstraction at C-8 and antarafacial dioxygen insertion. (5S,8R)-DiHODE is generated via an additional pro-S-hydrogen abstraction at C-5 of the substrate (20, 21).Additional studies with fungal knock-out strains led to the hypothesis that PpoA may be responsible for the synthesis of (8R)-hydroperoxides, which are partially reduced to (8R)-hydroxides (20). It was suggested that, analogous with 7,8-LDS, (8R)-hydroperoxides are then converted to 5,8-dihydroxides by PpoA. Furthermore, it was concluded that ppoC may code for linoleate (10R)-DOX (20). Analysis of Ppo enzymes from A. nidulans in studies published so far has been performed either by using knock-out mutants to demonstrate the absence of a subset of psi factors or by using crude mycelial extracts; both experimental setups have the disadvantage of observing multiple enzymatic reactions in parallel.To characterize the biochemical properties of PpoA in more detail, we cloned and expressed recombinant PpoA in Escherichia coli. After purification of the enzyme by up to 62-fold, biochemical characterization was performed. The studies revealed mechanistic as well as structural similarities to and differences from 7,8-LDS from G. graminis. Both enzymes were found to be homotetrameric ferric heme proteins that catalyze the synthesis of (8R)-HPODE. Whereas G. graminis 7,8-LDS converts the intermediate formed to (7S,8S)-DiHODE, PpoA produces 5,8-DiHODE.Using site-directed mutagenesis, we provide evidence that there are striking differences between both enzymes regarding the catalytic reaction cycle. Thus, we found that PpoA uses different domains to catalyze the two reaction steps. We suggest that the DOX reaction, yielding 8-HPODE, takes place in the N-terminal heme peroxidase domain. The isomerization of this intermediate product to the end product, 5,8-DiHODE, is accomplished, however, independently by the C-terminal P450 heme thiolate domain in an 8-hydroperoxide isomerase reaction.In addition, we are able to provide evidence that, during the catalysis, PpoA generates a carbon-centered radical presumably at C-8, like G. graminis 7,8-LDS. Furthermore, we determined the kinetic parameters for the first reaction step.  相似文献   

14.
Present address: Hagoromo Foods Corporation. 151, Shimazaki-cho, Shimizu-shi, Shizuoka 424-85. Japan.

The seasonal variation offatty acid composition in lipids of various organs and stomach contents of bonito (Euthynnus pelamis) was investigated. Although docosahexaenoic acid in the lipids of the stomach contents originating from their prey organisms varied from about 13% to 31%, it was the dominant unsaturated fatty acid and

accounted for more than 25% of the total fatty acids in the lipids of every organ of bonito in and out of season, and its seasonal variation was comparatively small.  相似文献   

15.
Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty acids closely parallel their prevalences in the hepatopancreas of C. quadricarinatus as measured under specific diet conditions.  相似文献   

16.
Protein phosphorylation by kinases plays a central role in the regulation and coordination of multiple biological processes. In general, knowledge on kinase specificity is restricted to substrates identified in the context of specific cellular responses, but kinases are likely to have multiple additional substrates and be integrated in signaling networks that might be spatially and temporally different, and in which protein complexes and subcellular localization can play an important role. In this report the substrate specificity of atypical human vaccinia-related kinases (VRK1 and VRK2) using a human peptide-array containing 1080 sequences phosphorylated in known signaling pathways has been studied. The two kinases identify a subset of potential peptide targets, all of them result in a consensus sequence composed of at least four basic residues in peptide targets. Linear peptide arrays are therefore a useful approach in the characterization of kinases and substrate identification, which can contribute to delineate the signaling network in which VRK proteins participate. One of these target proteins is coilin; a basic protein located in nuclear Cajal bodies. Coilin is phosphorylated in Ser184 by both VRK1 and VRK2. Coilin colocalizes and interacts with VRK1 in Cajal bodies, but not with the mutant VRK1 (R358X). VRK1 (R358X) is less active than VRK1. Altered regulation of coilin might be implicated in several neurological diseases such as ataxias and spinal muscular atrophies.  相似文献   

17.
The stereochemical inversion of (R)-5-hydroxymethyl-3-tert-butyl-2-oxazolidinone (la) or (R)-5-hydroxymethyl-3-isopropyl-2-oxazolidinone (lb) to the corresponding (S)-isomer was accomplished via a key intermediate, (R)-3-N-ethoxycarbonyl-N-tert-butylamino-l,2-epoxypropane (5a) or (R)-3-N-ethoxycarbonyl-N-isopropylamino-l,2-epoxypropane (5b), in a high enantiomeric excess. (S)-la (99%e.e.) or (S)-lb (91%e.e.) was thus obtained from the respective (R)-isomer (la; 99%e.e., lb; 95%e.e.).  相似文献   

18.
Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestis topoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia coli topoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds.  相似文献   

19.
Extracts of Agrobacterium tumefaciens were used to mediate the stereospecific conversion of a racemic hydantoin to a carbamyl d-amino acid derivative, which is a precursor to (2R,4R,5S)-2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid (ACPA). ACPA has therapeutic value as an excitatory amino acid antagonist.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号