首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA damage response (DDR) coordinates DNA repair with cell cycle checkpoints to ameliorate or mitigate the pathological effects of DNA damage. Automated quantitative analysis (AQUA) and Tissue Studio are commercial technologies that use digitized immunofluorescence microscopy images to quantify antigen expression in defined tissue compartments. Because DDR is commonly activated in cancer and may reflect genetic instability within the lesion, a method to quantify DDR in cancer offers potential diagnostic and/or prognostic value. In this study, both AQUA and Tissue Studio algorithms were used to quantify the DDR in radiation-damaged skin fibroblasts, melanoma cell lines, moles, and primary and metastatic melanomas. Digital image analysis results for three markers of DDR (γH2AX, P-ATM, P-Chk2) correlated with immunoblot data for irradiated fibroblasts, whereas only γH2AX and P-Chk2 correlated with immunoblot data in melanoma cell lines. Melanoma cell lines displayed substantial variation in γH2AX and P-Chk2 expression, and P-Chk2 expression was significantly correlated with radioresistance. Moles, primary melanomas, and melanoma metastases in brain, lung and liver displayed substantial variation in γH2AX expression, similar to that observed in melanoma cell lines. Automated digital analysis of immunofluorescent images stained for DDR biomarkers may be useful for predicting tumor response to radiation and chemotherapy.  相似文献   

2.
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.  相似文献   

3.
H2AX is an important factor for chromatin remodeling to facilitate accumulation of DNA damage-related proteins at DNA double-strand break (DSB) sites. In order to further understand the role of H2AX in the DNA damage response (DDR), we attempted to identify H2AX-interacting proteins by proteomics analysis. As a result, we identified nucleolin as one of candidates. Here, we show a novel role of a major nucleolar protein, nucleolin, in DDR. Nucleolin interacted with γ-H2AX and accumulated to laser micro-irradiated DSB damage sites. Chromatin Immunoprecipitation assay also displayed the accumulation of nucleolin around DSB sites. Nucleolin-depleted cells exhibited repression of both ATM-dependent phosphorylation following exposure to γ-ray and subsequent cell cycle checkpoint activation. Furthermore, nucleolin-knockdown reduced HR and NHEJ activity and showed decrease in IR-induced chromatin accumulation of HR/NHEJ factors, agreeing with the delayed kinetics of γ-H2AX focus. Moreover, nucleolin-knockdown decreased MDC1-related events such as focus formation of 53 BP1, RNF168, phosphorylated ATM, and H2A ubiquitination. Nucleolin also showed FACT-like activity for DSB damage-induced histone eviction from chromatin. Taken together, nucleolin could promote both ATM-dependent cell cycle checkpoint and DSB repair by functioning in an MDC1-related pathway through its FACT-like function.  相似文献   

4.
To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.  相似文献   

5.
TRAIL is an endogenous death receptor ligand also used therapeutically because of its selective proapoptotic activity in cancer cells. In the present study, we examined chromatin alterations induced by TRAIL and show that TRAIL induces a rapid activation of DNA damage response (DDR) pathways with histone H2AX, Chk2, ATM, and DNA-PK phosphorylations. Within 1 h of TRAIL exposure, immunofluorescence confocal microscopy revealed γ-H2AX peripheral nuclear staining (γ-H2AX ring) colocalizing with phosphorylated/activated Chk2, ATM, and DNA-PK inside heterochromatin regions. The marginal distribution of DDR proteins in early apoptotic cells is remarkably different from the focal staining seen after DNA damage. TRAIL-induced DDR was suppressed upon caspase inhibition or Bax inactivation, demonstrating that the DDR activated by TRAIL is downstream from the mitochondrial death pathway. H2AX phosphorylation was dependent on DNA-PK, while Chk2 phosphorylation was dependent on both ATM and DNA-PK. Downregulation of Chk2 decreased TRAIL-induced cell detachment; delayed the activation of caspases 2, 3, 8, and 9; and reduced TRAIL-induced cell killing. Together, our findings suggest that nuclear activation of Chk2 by TRAIL acts as a positive feedback loop involving the mitochondrion-dependent activation of caspases, independently of p53.  相似文献   

6.

Background

In response to DNA double-strand breaks, the histone protein H2AX becomes phosphorylated at its C-terminal serine 139 residue, referred to as γ-H2AX. Formation of γ-H2AX foci is associated with recruitment of p53-binding protein 1 (53BP1), a regulator of the cellular response to DNA double-strand breaks. γ-H2AX expression in peripheral blood mononuclear cells (PBMCs) was recently proposed as a diagnostic and disease activity marker for multiple sclerosis (MS).

Objective

To evaluate the significance of γ-H2AX and 53BP1 foci in PBMCs as diagnostic and disease activity markers in patients with clinically isolated syndrome (CIS) and early relapsing-remitting MS (RRMS) using automated γ-H2AX and 53BP1 foci detection.

Methods

Immunocytochemistry was performed on freshly isolated PBMCs of patients with CIS/early RRMS (n = 25) and healthy controls (n = 27) with γ-H2AX and 53BP1 specific antibodies. Nuclear γ-H2AX and 53BP1 foci were determined using a fully automated reading system, assessing the numbers of γ-H2AX and 53BP1 foci per total number of cells and the percentage of cells with foci. Patients underwent contrast enhanced 3 Tesla magnetic resonance imaging (MRI) and clinical examination including expanded disability status scale (EDSS) score. γ-H2AX and 53BP1 were also compared in previously frozen PBMCs of each 10 CIS/early RRMS patients with and without contrast enhancing lesions (CEL) and 10 healthy controls.

Results

The median (range) number of γ-H2AX (0.04 [0–0.5]) and 53BP1 (0.005 [0–0.2]) foci per cell in freshly isolated PBMCs across all study participants was low and similar to previously reported values of healthy individuals. For both, γ-H2AX and 53BP1, the cellular focus number as well as the percentage of positive cells did not differ between patients with CIS/RRMS and healthy controls. γ-H2AX and 53BP1 levels neither correlated with number nor volume of T2-weighted lesions on MRI, nor with the EDSS. Although γ-H2AX, but not 53BP1, levels were higher in previously frozen PBMCs of patients with than without CEL, γ-H2AX values of both groups overlapped and γ-H2AX did not correlate with the number or volume of CEL.

Conclusion

γ-H2AX and 53BP1 foci do not seem to be promising diagnostic or disease activity biomarkers in patients with early MS. Lymphocytic DNA double-strand breaks are unlikely to play a major role in the pathophysiology of MS.  相似文献   

7.
RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid–liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.  相似文献   

8.
The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7''s N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein.  相似文献   

9.
During eukaryotic DNA damage response (DDR), one of the earliest events is the phosphorylation of the C-terminal SQ motif of histone H2AX (H2A in yeasts). In human cells, phosphorylated H2AX (γH2AX) is recognized by MDC1, which serves as a binding platform for the accumulation of a myriad of DDR factors on chromatin regions surrounding DNA lesions. Despite its important role in DDR, no homolog of MDC1 outside of metazoans has been described. Here, we report the characterization of Mdb1, a protein from the fission yeast Schizosaccharomyces pombe, which shares significant sequence homology with human MDC1 in their C-terminal tandem BRCT (tBRCT) domains. We show that in vitro, recombinant Mdb1 protein binds a phosphorylated H2A (γH2A) peptide, and the phospho-specific binding requires two conserved phospho-binding residues in the tBRCT domain of Mdb1. In vivo, Mdb1 forms nuclear foci at DNA double strand breaks (DSBs) induced by the HO endonuclease and ionizing radiation (IR). IR-induced Mdb1 focus formation depends on γH2A and the phospho-binding residues of Mdb1. Deleting the mdb1 gene does not overtly affect DNA damage sensitivity in a wild type background, but alters the DNA damage sensitivity of cells lacking another γH2A binder Crb2. Overexpression of Mdb1 causes severe DNA damage sensitivity in a manner that requires the interaction between Mdb1 and γH2A. During mitosis, Mdb1 localizes to spindles and concentrates at spindle midzones at late mitosis. The spindle midzone localization of Mdb1 requires its phospho-binding residues, but is independent of γH2A. Loss of Mdb1 or mutating its phospho-binding residues makes cells more resistant to the microtubule depolymerizing drug thiabendazole. We propose that Mdb1 performs dual roles in DDR and mitotic spindle regulation.  相似文献   

10.
Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.  相似文献   

11.
The DNA damage response (DDR) triggers widespread changes in gene expression, mediated partly by alterations in micro(mi) RNA levels, whose nature and significance remain uncertain. Here, we report that miR-34a, which is upregulated during the DDR, modulates the expression of protein phosphatase 1γ (PP1γ) to regulate cellular tolerance to DNA damage. Multiple bio-informatic algorithms predict that miR-34a targets the PP1CCC gene encoding PP1γ protein. Ionising radiation (IR) decreases cellular expression of PP1γ in a dose-dependent manner. An miR-34a-mimic reduces cellular PP1γ protein. Conversely, an miR-34a inhibitor antagonizes IR-induced decreases in PP1γ protein expression. A wild-type (but not mutant) miR-34a seed match sequence from the 3′ untranslated region (UTR) of PP1CCC when transplanted to a luciferase reporter gene makes it responsive to an miR-34a-mimic. Thus, miR-34a upregulation during the DDR targets the 3′ UTR of PP1CCC to decrease PP1γ protein expression. PP1γ is known to antagonize DDR signaling via the ataxia-telangiectasia-mutated (ATM) kinase. Interestingly, we find that cells exposed to DNA damage become more sensitive – in an miR-34a-dependent manner – to a second challenge with damage. Increased sensitivity to the second challenge is marked by enhanced phosphorylation of ATM and p53, increased γH2AX formation, and increased cell death. Increased sensitivity can be partly recapitulated by a miR-34a-mimic, or antagonized by an miR-34a-inhibitor. Thus, our findings suggest a model in which damage-induced miR-34a induction reduces PP1γ expression and enhances ATM signaling to decrease tolerance to repeated genotoxic challenges. This mechanism has implications for tumor suppression and the response of cancers to therapeutic radiation.  相似文献   

12.
DNA damage evokes a complex and highly coordinated DNA damage response (DDR) that is integral to the suppression of genomic instability. Double-strand breaks (DSBs) are considered the most deleterious form damage. Evidence suggests that trimethylation of histone H3 lysine 9 (H3K9me3) presents a barrier to DSB repair. Also, global levels of histone methylation are clinically predictive for several tumor types. Therefore, demethylation of H3K9 may be an important step in the repair of DSBs. The KDM4 subfamily of demethylases removes H3K9 tri- and dimethylation and contributes to the regulation of cellular differentiation and proliferation; mutation or aberrant expression of KDM4 proteins has been identified in several human tumors. We hypothesize that members of the KDM4 subfamily may be components of the DDR. We found that Kdm4b-enhanced GFP (EGFP) and KDM4D-EGFP were recruited rapidly to DNA damage induced by laser micro-irradiation. Focusing on the clinically relevant Kdm4b, we found that recruitment was dependent on poly(ADP-ribose) polymerase 1 activity as well as Kdm4b demethylase activity. The Kdm4 proteins did not measurably accumulate at γ-irradiation-induced γH2AX foci. Nevertheless, increased levels of Kdm4b were associated with decreased numbers of γH2AX foci 6 h after irradiation as well as increased cell survival. Finally, we found that levels of H3K9me2 and H3K9me3 were decreased at early time points after 2 gray of γ-irradiation. Taken together, these data demonstrate that Kdm4b is a DDR protein and that overexpression of Kdm4b may contribute to the failure of anti-cancer therapy that relies on the induction of DNA damage.  相似文献   

13.
Cell cycle checkpoints induced by DNA damage play an integral role in preservation of genomic stability by allowing cells to limit the propagation of deleterious mutations. The retinoblastoma tumor suppressor (RB) is crucial for the maintenance of the DNA damage checkpoint function because it elicits cell cycle arrest in response to a variety of genotoxic stresses. Although sporadic loss of RB is characteristic of most cancers and results in the bypass of the DNA damage checkpoint, the consequence of RB loss upon chemotherapeutic responsiveness has been largely uninvestigated. Here, we employed a conditional knockout approach to ablate RB in adult fibroblasts. This system enabled us to examine the DNA damage response of adult cells following acute RB deletion. Using this system, we demonstrated that loss of RB disrupted the DNA damage checkpoint elicited by either cisplatin or camptothecin exposure. Strikingly, this bypass was not associated with enhanced repair, but rather the accumulation of phosphorylated H2AX (γH2AX) foci, which indicate DNA double-strand breaks. The formation of γH2AX foci was due to ongoing replication following chemotherapeutic treatment in the RB-deficient cells. Additionally, peak γH2AX accumulation occurred in S-phase cells undergoing DNA replication in the presence of damage, and these γH2AX foci co-localized with replication foci. These results demonstrate that acute RB loss abrogates DNA damage-induced cell cycle arrest to induce γH2AX foci formation. Thus, secondary genetic lesions induced by RB loss have implications for the chemotherapeutic response and the development of genetic instability.  相似文献   

14.
H2AX phosphorylation at serine 139 (γH2AX) is a sensitive indicator of both DNA damage and DNA replication stress. Here we show that γH2AX formation is greatly enhanced in response to replication inhibitors but not ionizing radiation in HCT116 or SW480 cells depleted of Chk1. Although H2AX phosphorylation precedes the induction of apoptosis in such cells, our results suggest that cells containing γH2AX are not committed to death. γH2AX foci in these cells largely colocalize with RPA foci and their formation is dependent upon the essential replication helicase cofactor Cdc45, suggesting that H2AX phosphorylation occurs at sites of stalled forks. However Chk1-depleted cells released from replication inhibitors retain γH2AX foci and do not appear to resume replicative DNA synthesis. BrdU incorporation only occurs in a minority of Chk1-depleted cells containing γH2AX foci after release from thymidine arrest and, in cells incorporating BrdU, DNA synthesis does not occur at sites of γH2AX foci. Furthermore activated ATM and Chk2 persist in these cells. We propose that the γH2AX foci in Chk1-depleted cells may represent sites of persistent replication fork damage or abandonment that are unable to resume DNA synthesis but do not play a direct role in the Chk1 suppressed death pathway.  相似文献   

15.
The cyclin-dependent kinase 5 (CDK-5) activating protein, p35, is important for acute herpes simplex virus 1 (HSV-1) replication in mice. This report shows that HSV-1 increases p35 levels, changes the primary localization of CDK-5 from the nucleus to the cytoplasm, and enhances CDK-5 activity during lytic or acute infection. Infected neurons also stained positive for the DNA damage response (DDR) marker γH2AX. We propose that CDK-5 is activated by the DDR to protect infected neurons from apoptosis.  相似文献   

16.
Ubiquitin modification at double strand breaks (DSB) sites is an essential regulator of signaling and repair. γH2AX extends from DSB sites and provides a platform for subsequent recruitment and amplification of DNA repair proteins and signaling factors. Here, we found that RNF8/RNF168 ubiquitylates γH2AX. We identified that USP11 is a unique deubiquitylation enzyme for γH2AX. USP11 deubiquitylates γH2AX both in vivo and in vitro but not the canonical (ub)-K119-H2A and (ub)-K120-H2B in vitro, and USP11 ablation enhances the levels of γH2AX ubiquitylation. We also found that USP11 interacts with γH2AX both in vivo and in vitro. We found that 53BP1 and ubiquitin-conjugated proteins are misregulated to be retained longer and stronger at DSB sites after knockdown of USP11. We further found that cells are hypersensitive to γ-irradiation after ablation of USP11. Together, our findings elucidate deeply and extensively the mechanism of RNF8/RNF168 and USP11 to maintain the proper status of ubiquitylation γH2AX to repair DSB.  相似文献   

17.
Oncogene induced senescence (OIS) is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR), senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs). We showed here that hypoxia prevents execution of oncogene induced senescence (OIS), through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α). In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.  相似文献   

18.
Induction of DNA double strand breaks leads to phosphorylation and focus-formation of H2AX. However, foci of phosphorylated H2AX (γH2AX) appear during DNA replication also in the absence of exogenously applied injury. We measured the amount and the number of foci of γH2AX in different phases of the cell cycle by flow cytometry, sorting and microscopy in 4 malignant B-lymphocyte cell lines. There were no detectable γH2AX and no γH2AX-foci in G1 cells in exponentially growing cells and cells treated with PARP inhibitor (PARPi) for 24 h to create damage and reduce DNA repair. The amount of γH2AX increased immediately upon S phase entry, and about 10 and 30 γH2AX foci were found in mid-S phase control and PARPi-treated cells, respectively. The γH2AX-labeled damage caused by DNA replication was not fully repaired before entry into G2. Intriguingly, G2 cells populated a continuous distribution of γH2AX levels, from cells with a high content of γH2AX and the same number of foci as S phase cells (termed “G2H” compartment), to cells that there were almost negative and had about 2 foci (termed “G2L” compartment). EdU-labeling of S phase cells revealed that G2H was directly populated from S phase, while G2L was populated from G2H, but in control cells also directly from S phase. The length of G2H in particular increased after PARPi treatment, compatible with longer DNA-repair times. Our results show that cells repair replication-induced damage in G2H, and enter mitosis after a 2–3 h delay in G2L.  相似文献   

19.
Increased concentrations of extracellular solutes affect cell function and fate by stimulating cellular responses, such as evoking MAPK cascades, altering cell cycle progression, and causing apoptosis. Our study results here demonstrate that hyperosmotic stress induced H2AX phosphorylation (γH2AX) by an unrevealed kinase cascade involving polo-like kinase 3 (Plk3) in human corneal epithelial (HCE) cells. We found that hyperosmotic stress induced DNA-double strand breaks and increased γH2AX in HCE cells. Phosphorylation of H2AX at serine 139 was catalyzed by hyperosmotic stress-induced activation of Plk3. Plk3 directly interacted with H2AX and was colocalized with γH2AX in the nuclei of hyperosmotic stress-induced cells. Suppression of Plk3 activity by overexpression of a kinase-silencing mutant or by knocking down Plk3 mRNA effectively reduced γH2AX in hyperosmotic stress-induced cells. This was consistent with results that show γH2AX was markedly suppressed in the Plk3−/− knock-out mouse corneal epithelial layer in response to hyperosmotic stimulation. The effect of hyperosmotic stress-activated Plk3 and increased γH2AX in cell cycle progression showed an accumulation of G2/M phase, altered population in G1 and S phases, and increased apoptosis. Our results for the first time reveal that hyperosmotic stress-activated Plk3 elicited γH2AX. This Plk3-mediated activation of γH2AX subsequently regulates the cell cycle progression and cell fate.  相似文献   

20.
Phosphorylation of histone H2AX on Ser 139 (γH2AX) is one of the earliest events in the response to DNA double-strand breaks; however, the subsequent removal of γH2AX from chromatin is less understood, despite being a process tightly coordinated with DNA repair. Previous studies in yeast have identified the Pph3 phosphatase (the PP4C orthologue) as important for the dephosphorylation of γH2AX. By contrast, work in human cells attributed this activity to PP2A. Here, we report that PP4 contributes to the dephosphorylation of γH2AX, both at the sites of DNA damage and in undamaged chromatin in human cells, independently of a role in DNA repair. Furthermore, depletion of PP4C results in a prolonged checkpoint arrest, most likely owing to the persistence of mediator of DNA damage checkpoint 1 (MDC1) at the sites of DNA lesions. Taken together, these results indicate that PP4 is an evolutionarily conserved γH2AX phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号