共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron Transport in Escherichia coli: Uptake and Modification of Ferrichrome 总被引:11,自引:5,他引:6 下载免费PDF全文
During the transport of iron as ferrichrome complex into cells of Escherichia coli K-12, the ligand was modified and excreted into the medium. The rate of the formation of the modified product corresponded with the rate of iron transport. The modified product showed a decreased affinity for ferric iron and did not serve as an effective iron ionophore. After all of the ferrichrome had been converted, the modified product was taken up into the cell in an iron-free form. The uptake of ferrichrome and of the modified product depended on the transport system specified by the tonA and tonB genes. The modified product could be converted back into ferrichrome by mild acid or alkaline hydrolysis. One mole of acetate was released per mole of ferrichrome. It is proposed that one N-hydroxyl group of ferrichrome is acetylated to explain the low affinity for iron as the N-hydroxyl groups form the ligands for iron (III). A weak ester linkage by which the acetyl group is covalently bonded would account for the easy hydrolysis. The iron-free form of ferrichrome, deferri-ferrichrome, was also rapidly converted when incubated with cells with a functional transport system. It is therefore likely that iron is released from ferrichrome by reduction before modification takes place. The conversion of the ligand could be a mechanism by which cells rid themselves of a potentially deleterious ligand for iron in the cytoplasm. A possible role in ferrichrome transport is discussed. 相似文献
2.
Characterization of Fluorescent Siderophore-Mediated Iron Uptake in Pseudomonas sp. Strain M114: Evidence for the Existence of an Additional Ferric Siderophore Receptor 总被引:2,自引:0,他引:2 下载免费PDF全文
John Morris Daniel J. O'Sullivan Margot Koster John Leong Peter J. Weisbeek Fergal O'Gara 《Applied microbiology》1992,58(2):630-635
In Pseudomonas sp. strain M114, the outer membrane receptor for ferric pseudobactin M114 was shown to transport ferric pseudobactins B10 and A225, in addition to its own. The gene encoding this receptor, which was previously cloned on pCUP3, was localized by Tn5 mutagenesis to a region comprising >1.6 kb of M114 DNA. A mutant (strain M114R1) lacking this receptor was then created by a marker exchange technique. Characterization of this mutant by using purified pseudobactin M114 in radiolabeled ferric iron uptake studies confirmed that it was completely unable to utilize this siderophore for acquisition of iron. In addition, it lacked an outer membrane protein band of 89 kDa when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. As a result, growth of the mutant was severely restricted under low-iron conditions. However, this phenotype was reversed in the presence of another fluorescent siderophore (pseudobactin MT3A) from Pseudomonas sp. strain MT3A, suggesting the presence of a second receptor in strain M114. Furthermore, wild-type Pseudomonas sp. strain B24 was not able to utilize ferric pseudobactin MT3A, and this phenotype was not reversed upon expression of the M114 receptor encoded on pCUP3. However, a cosmid clone (pMS1047) that enabled strain B24 to utilize ferric pseudobactin MT3A was isolated from an M114 gene bank. Radiolabel transport assays with purified pseudobactin MT3A confirmed this event. Plasmid pMS1047 was shown to encode an outer membrane protein of 81 kDa in strain B24 under iron-limiting conditions; this protein corresponds to a similar protein in strain M114. 相似文献
3.
Pseudomonas aeruginosa produces the siderophore, pyoverdine (PVD), to obtain iron. Siderophore pathways involve complex mechanisms, and the machineries responsible for biosynthesis, secretion and uptake of the ferri-siderophore span both membranes of Gram-negative bacteria. Most proteins involved in the PVD pathway have been identified and characterized but the way the system functions as a whole remains unknown. By generating strains expressing fluorescent fusion proteins, we show that most of the proteins are homogeneously distributed throughout the bacterial cell. We also studied the dynamics of these proteins using fluorescence recovery after photobleaching (FRAP). This led to the first diffusion coefficients ever determined in P. aeruginosa. Cytoplasmic and periplamic diffusion appeared to be slower than in Escherichia coli but membrane proteins seemed to behave similarly in the two species. The diffusion of cytoplasmic and periplasmic tagged proteins involved in the PVD pathway was dependent on the interaction network to which they belong. Importantly, the TonB protein, motor of the PVD-Fe uptake process, was mostly immobile but its mobility increased substantially in the presence of PVD-Fe. 相似文献
4.
The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of Pseudomonas aeruginosa W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain 总被引:1,自引:0,他引:1 下载免费PDF全文
Jesús Campos-García Abraham Esteve Rafael Vzquez-Duhalt Jun Luis Ramos Gloria Sobern-Chvez 《Applied microbiology》1999,65(8):3730-3734
Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatography-mass spectrometric analysis, and a possible catabolic route is proposed. 相似文献
5.
6.
7.
The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron
in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available
in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the
laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research
that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients. 相似文献
8.
Iron scarcity is one of the nutrition limitations that the Gram-positive infectious pathogens Streptococcus pneumoniae encounter in the human host. To guarantee sufficient iron supply, the ATP binding cassette (ABC) transporter Pia is employed to uptake iron chelated by hydroxamate siderophore, via the membrane-anchored substrate-binding protein PiaA. The high affinity towards ferrichrome enables PiaA to capture iron at a very low concentration in the host. We presented here the crystal structures of PiaA in both apo and ferrichrome-complexed forms at 2.7 and 2.1 Å resolution, respectively. Similar to other class III substrate binding proteins, PiaA is composed of an N-terminal and a C-terminal domain bridged by an α-helix. At the inter-domain cleft, a molecule of ferrichrome is stabilized by a number of highly conserved residues. Upon ferrichrome binding, two highly flexible segments at the entrance of the cleft undergo significant conformational changes, indicating their contribution to the binding and/or release of ferrichrome. Superposition to the structure of Escherichia coli ABC transporter BtuF enabled us to define two conserved residues: Glu119 and Glu262, which were proposed to form salt bridges with two arginines of the permease subunits. Further structure-based sequence alignment revealed that the ferrichrome binding pattern is highly conserved in a series of PiaA homologs encoded by both Gram-positive and negative bacteria, which were predicted to be sensitive to albomycin, a sideromycin antibiotic derived from ferrichrome. 相似文献
9.
Caillet-Saguy C Piccioli M Turano P Lukat-Rodgers G Wolff N Rodgers KR Izadi-Pruneyre N Delepierre M Lecroisey A 《The Journal of biological chemistry》2012,287(32):26932-26943
The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His(32) and Tyr(75), respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr(75)-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins. 相似文献
10.
Under iron-limiting conditions, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin (PaA), which, after complexing iron, is transported back into the cells via its outer membrane receptor FpvA. The recent finding that all FpvA receptors on the bacterial cell surface are loaded with iron-free PaA under iron limiting conditions has raised questions about the mechanism by which P. aeruginosa transports efficiently iron. We used [(3)H]PaA' [(55)Fe]PaA-Fe, and a kinetically stable chromium-PaA complex to show that iron loading of the receptor occurs through a siderophore displacement mechanism in vivo. Moreover, the fluorescence properties of iron-free PaA revealed that, after PaA-Fe uptake and dissociation, the PaA molecule is recycled into the extracellular medium. We used fluorescence resonance energy transfer (FRET) between the PaA chromophore and the FpvA tryptophans in vivo to monitor the kinetics of PaA displacement by PaA-Fe at the cell surface, the dissociation of iron from the siderophore, and the recycling of PaA back to the receptor on the outer membrane of the bacteria in real time. The loading status of FpvA (PaA versus PaA-Fe) was shown to depend on the relative concentration of the two forms of pyoverdin in the growth medium. 相似文献
11.
Role of Iron and Sulfur in Pigment and Slime Formation by Pseudomonas aeruginosa 总被引:2,自引:0,他引:2 下载免费PDF全文
Samuel A. Palumbo 《Journal of bacteriology》1972,111(2):430-436
Media and an analytical scheme have been developed which allow both a qualitative and quantitative estimation of the formation of pyocyanine, related phenazines, pyorubrin, and a blue and a yellow-green fluorescent pigment by Pseudomonas aeruginosa. Use of the defined pyocyanine medium of Frank and DeMoss with sulfate or various organic sulfur sources allowed formation of pyocyanine, related phenazines, and pyorubrin. When sulfite was the sulfur source with or without iron, P. aeruginosa formed either a yellow-green or a blue fluorescent pigment. Formation of fluorescent pigments of P. aeruginosa is related to the ability of sulfite to act as a specific sulfur source. In an investigation of the role of both added iron and sulfur sources, complex patterns of pigment formation were observed. In addition to the fluorescent pigments, sulfite also supported the formation of slime by P. aeruginosa. 相似文献
12.
The regulation and genetic control of the beta-ketoadipate pathway in Pseudomonas aeruginosa were investigated. The pattern of enzyme induction is apparently the same as in P. putida. Mutants were obtained for all but 1 of the 11 structural genes; the proximity of these genes on the chromosome was examined by transduction of the mutants with phage F116. If a group of enzymes was induced by the same compounds, the corresponding genes were closely clustered. Surprisingly, some locispecifying enzymes not sharing a common inducer were also clustered. It is suggested that this latter finding may indicate a degree of chromosomal specialization. 相似文献
13.
An inhibitor was found in the culture fluid of Pseudomonas aeruginosa PAO1, which could inhibit the activity of the Pseudomonas autoinducer (PAI). The maximal inhibitory activity occurred in stationary phase culture sup ernatant. The PAI inhibitor did not influence the cell growth and the PAI production by P. aeruginosa PAO1 when the PAI inhibitor was added into culture medium. The induced expression of lacZ in the reporter strain Agrobacterium tumefaciens NT1 was suppressed by this PAI inhibitor, whereas inhibition could be relieved by increasing the auto inducer concentration. The quorum sensing of P. aeruginosa was inhibited presumably by inhibiting the inducing activity of Pseudomonas autoinducer but not by inhibiting the production of Pseudomonas autoinducer. It was demonstrated that the structure of the PAI inhibitor was different from that of acyl-homoserine lactones. 相似文献
14.
Preston M. Luong Benjamin D. Shogan Alexander Zaborin Natalia Belogortseva Joshua D. Shrout Olga Zaborina John C. Alverdy 《Journal of bacteriology》2014,196(2):504-513
We recently demonstrated that Pseudomonas aeruginosa PAO1 undergoes a pronounced phenotypic change when introduced into the intestines of rats during surgical injury. Recovered strains displayed a specific phenotype (termed the P2 phenotype) characterized by altered pyocyanin production, high collagenase activity, high swarming motility, low resistance to chloramphenicol, and increased killing of Caenorhabditis elegans compared to the inoculating strain (termed the P1 phenotype). The aims of this study were to characterize the differences between the P. aeruginosa P1 and P2 phenotypes in quorum sensing and competitiveness. We then determined the presence of the P2 phenotype among PAO1 strains from various laboratories. Results demonstrated that P2 cells display accelerated growth during early exponential phase and early activation of quorum-sensing systems and overcome the growth of P1 cells in a mixed population. Among eight PAO1 strains obtained from different laboratories, four exhibited the P2 phenotype. Of 27 mutants analyzed from the P. aeruginosa MPAO1 transposon library, 25 displayed P2 phenotypes. The P2 phenotype in both cases correlated with a lack of expression of mexE or mexF due to mutations in mexT and mexF genes. In summary, strains possessing the P2 phenotype are distributed among PAO1 strains commonly used across a variety of research laboratories. Genetically, they are characterized by various mutations in mexT or mexF. 相似文献
15.
Expression of the argF gene of Pseudomonas aeruginosa in Pseudomonas aeruginosa, Pseudomonas putida, and Escherichia coli 下载免费PDF全文
R' plasmids carrying argF genes from Pseudomonas aeruginosa strains PAO and PAC were transferred to Pseudomonas putida argF and Escherichia coli argF strains. Expression in P. putida was similar to that in P. aeruginosa and was repressed by exogenous arginine. Expression in E. coli was 2 to 4% of that in P. aeruginosa. Exogenous arginine had no effect, and there were no significant differences between argR' and argR strains of E. coli in this respect. 相似文献
16.
Oswaldo Tostado-Islas Alberto Mendoza-Ortiz Gabriel Ramírez-García Isamu Daniel Cabrera-Takane Daniel Loarca Caleb Prez-Gonzlez Ricardo Jasso-Chvez J. Guillermo Jimnez-Corts Yuki Hoshiko Toshinari Maeda Adrian Cazares Rodolfo García-Contreras 《The ISME journal》2021,15(8):2379
Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13–33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.Subject terms: Bacteriology, Microbial ecology 相似文献
17.
Vande Woestyne M Bruyneel B Mergeay M Verstraete W 《Applied and environmental microbiology》1991,57(4):949-954
Pseudomonas roseus fluorescens produces, besides the Fe chelator proferrorosamine A, Fe -chelating compounds, called siderophores. The production of proferrorosamine A and siderophores by P. roseus fluorescens appears to be controlled in a similar way by the concentration of available iron and by the concentration of dissolved oxygen. The higher the concentration of iron available for the microorganism, the lower the production of both chelating compounds. However, the production of siderophores was much more sensitive to iron availability than was proferrorosamine A production. Proferrorosamine A and siderophores were only produced in minimal medium C if the concentration of dissolved oxygen ranged from 4.5 to 2.0 ppm. At higher or lower concentrations, none of the iron-chelating compounds were produced. Furthermore, it has been shown that proferrorosamine-negative Tn5 mutants of P. roseus fluorescens were able to form siderophores only under iron-limiting conditions when proferrorosamine A was added to the medium. Our data suggest that proferrorosamine A production is essential for siderophore synthesis by P. roseus fluorescens; the production of siderophores occurred only when proferrorosamine A was present. 相似文献
18.
Rita Ramalho Joaquim Cunha Paula Teixeira Paul A Gibbs 《Journal of microbiological methods》2002,49(1):69-74
Pseudomonas aeruginosa has been implicated as a foodborne and waterborne pathogen and is now considered a primary infectious agent. In the present study, the survival of P. aeruginosa inoculated in mineral water was evaluated by drop counts on Pseudomonas Agar Base (PAB), PAB with CN supplement X107, PAB with cetrimide, PAB with nalidixic acid, and these media with added FeSO(4). Initial counts, before starvation, were the same in all media tested. Following this period, P. aeruginosa became sensitive to PAB with added cetrimide. The addition of FeSO(4) did not improve the recovery of stressed P. aeruginosa but gave colonies a typical dark brown colour being easily differentiated from other species that can grow at 42 degrees C. The modified Pseudomonas agar medium was also tested with several P. aeruginosa strains, other species of Pseudomonas, and other genera. Only P. aeruginosa strains (pyocyanin positive) produced the typical colonies. Our results demonstrate that Pseudomonas agar with ferrous sulphate, used for the differentiation of P. aeruginosa colonies, and nalidixic acid, used as an inhibitor of Gram-positive bacteria, might be a useful medium for the detection of injured P. aeruginosa in mineral water. 相似文献
19.
Janssen Dick B. op den Camp Huub J. M. Leenen Pieter J. M. van der Drift Chris 《Archives of microbiology》1980,124(2-3):197-203
Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen while synthesis of the enzyme was repressed and that present was adenylylated in cultures with excess nitrogen.NADP-and NAD-dependent glutamate dehydrogenase could be separated by column chromatography and showed molecular weights of 110,000 and 220,000, respectively. Synthesis of the NADP-dependent glutamate dehydrogenase is repressed under nitrogen limitation and by growth on glutamate. In contrast, NAD-dependent glutamate dehydrogenase is derepressed by glutamate. Glutamate synthase is repressed by glutamate but not by excess nitrogen. 相似文献
20.
Release of rhodanese from Pseudomonas aeruginosa by cold shock and its localization within the cell.
Whole cells of Pseudomonas aeruginosa possess rhodanese activity. The enzyme can be released by rapidly resuspending the cells in cold Tris--HCl buffer. Approximately 95% of the rhodanese activity is released by cold shock. Release of the enzyme can be inhibited either by preincubating the cells with Mg2+ or by incorporating Mg2+ into the shocking buffer. The effect of Mg2+ can be reversed by washing the cells twice with buffer prior to cold shock. While rhodanese can be released from P. aeruginosa by cold shock, lactic dehydrogenase, a cytoplasmic enzyme, remains within the cell. Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity. These data suggest that rhodanese in P. aeruginosa, like alkaline phosphatase, is located distal to the cytoplasmic membrane in the periplasmic space. Electron micrographs also show that portions of the lipopolysaccharide outer membrane are shed from the cell during cold shock, while cells preincubated with Mg2+ did not release segments of their outer membrane. 相似文献