共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to elucidate the mechanisms of illegitimate recombination in eukaryotes, we have studied the structure of DNA fragments integrated by illegitimate recombination into the genome of fission yeast. Nonhomologous recombination was rarely identified when a long region of homology with the chromosomal leu1+ gene was present in the introduced leu1::ura4+ DNA fragment; but a decrease in length of homology leads to an increase in the ratio of nonhomologous to homologous recombination events. The introduced DNA fragments were integrated into different sites in the chromosomes by nonhomologous recombination. The results suggested that there are multiple modes of integration; most events simply involve both ends of the fragments, while in other cases, fragments were integrated in a more complicated manner, probably via circularization or multimerization. To analyze the mechanism of the major type of integration, DNA fragments containing the recombination junctions of three recombinants were amplified by inverted polymerase chain reaction (IPCR) and their nucleotide sequences were determined. There was no obvious homology between introduced DNA and chromosomal DNA at these recombination sites. Furthermore it was found that each terminal region of the introduced DNA was deleted, but that there were no or very small deletions in the target sites of chromosomal DNA. Two models are proposed to explain the mechanism of nonhomologous integration. 相似文献
2.
An efficient insertional mutagenesis system has been developed for Schizosaccharomyces pombe based on linear PCR-generated cassettes containing selectable markers. It depends upon illegitimate recombination for integration into the genome. Various selectable markers of different sizes can be used to obtain sufficiently high transformation and integration frequencies. Based on Southern blotting, a single insertion is found in each strain and integration sites are broadly distributed in the genome. Sequence analysis of the insert junctions frequently reveals small regions of homology (4–10 bp) between the ends of the integrated cassette and the disrupted gene. The system has been used for simple genetic screens of various types and as a promoter trap for in-frame GFP fusions. 相似文献
3.
Most organisms form protein-rich, linear, ladder-like structures associated with chromosomes during early meiosis, the synaptonemal complex. In Schizosaccharomyces pombe, linear elements (LinEs) are thread-like, proteinacious chromosome-associated structures that form during early meiosis. LinEs are related to axial elements, the synaptonemal complex precursors of other organisms. Previous studies have led to the suggestion that axial structures are essential to mediate meiotic recombination. Rec10 protein is a major component of S. pombe LinEs and is required for their development. In this report we study recombination in a number of rec10 mutants, one of which (rec10-155) does not form LinEs, but is predicted to encode a truncated Rec10 protein. This mutant has levels of crossing over and gene conversion substantially higher than a rec10 null mutant (rec10-175) and forms cytologically detectable Rad51 foci indicative of meiotic recombination intermediates. These data demonstrate that while Rec10 is required for meiotic recombination, substantial meiotic recombination can occur in rec10 mutants that do not form LinEs, indicating that LinEs per se are not essential for all meiotic recombination. 相似文献
4.
Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates
下载免费PDF全文

Morishita T Furukawa F Sakaguchi C Toda T Carr AM Iwasaki H Shinagawa H 《Molecular and cellular biology》2005,25(18):8074-8083
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and gamma rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1Delta mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51. 相似文献
5.
Ionizing radiation is known to induce delayed chromosome and gene mutations in the descendants of the irradiated tissue culture cells. Molecular mechanisms of such delayed mutations are yet to be elucidated, since high genomic complexity of mammalian cells makes it difficult to analyze. We now tested radiation induction of delayed recombination in the fission yeast Schizosaccharomyces pombe by monitoring the frequency of homologous recombination after X-irradiation. A reporter with 200 bp tandem repeats went through spontaneous recombination at a frequency of 1.0 x 10(-4), and the frequency increased dose-dependently to around 10 x 10(-4) at 500 Gy of X-irradiation. Although the repair of initial DNA damage was thought to be completed before the restart of cell division cycle, the elevation of the recombination frequency persisted for 8-10 cell generations after irradiation (delayed recombination). The delayed recombination suggests that descendants of the irradiated cells keep a memory of the initial DNA damage which upregulates recombination machinery for 8-10 generations even in the absence of DNA double-strand breaks (DSBs). Since radical scavengers were ineffective in inhibiting the delayed recombination, a memory by continuous production of DNA damaging agents such as reactive oxygen species (ROS) was excluded. Recombination was induced in trans in a reporter on chromosome III by a DNA DSB at a site on chromosome I, suggesting the untargeted nature of delayed recombination. Interestingly, Rad22 foci persisted in the X-irradiated population in parallel with the elevation of the recombination frequency. These results suggest that the epigenetic damage memory induced by DNA DSB upregulates untargeted and delayed recombination in S. pombe. 相似文献
6.
Identification of healed terminal DNA fragments in linear minichromosomes of Schizosaccharomyces pombe. 总被引:8,自引:4,他引:8
下载免费PDF全文

T Matsumoto K Fukui O Niwa N Sugawara J W Szostak M Yanagida 《Molecular and cellular biology》1987,7(12):4424-4430
The minichromosome Ch16 of the fission yeast Schizosaccharomyces pombe is derived from the centromeric region of chromosome III. We show that Ch16 and a shorter derivative, Ch12, made by gamma-ray cleavage, are linear molecules of 530 and 280 kilobases, respectively. Each minichromosome has two novel telomeres, as shown by genomic Southern hybridization with an S. pombe telomere probe. Comparison by hybridization of the minichromosomes and their chromosomal counterparts showed no signs of gross rearrangement. Cosmid clones covering the ends of the long arms of Ch16 and Ch12 were isolated, and subcloned fragments that contained the breakage sites were identified. They are apparently unique in the genome. By hybridization and Bal 31 digestion, the ends appear to consist of the broken-end sequences directly associated with short stretches (about 300 base pairs) of new DNA that hybridizes to a cloned S. pombe telomere. They do not contain the telomere-adjacent repeated sequences that are present in the normal chromosomes. The sizes of the short telomeric stretches are roughly the same as those of the normal chromosomes. Our results show that broken chromosomal ends in S. pombe can be healed by the de novo addition of the short telomeric repeats. The formation of Ch16 must have required two breakage-healing events, whereas a single cleavage-healing event in the long arm of Ch16 yielded Ch12. 相似文献
7.
8.
9.
E d'Alen?on M Petranovic B Michel P Noirot A Aucouturier M Uzest S D Ehrlich 《The EMBO journal》1994,13(11):2725-2734
Nearly precise excision of a transposon related to Tn10 from an Escherichia coli plasmid was used as a model to study illegitimate DNA recombination between short direct repeats. The excision was stimulated 100-1000 times by induction of plasmid single-stranded DNA synthesis and did not involve transfer of DNA from the parental to the progeny molecule. We conclude that it occurred by copy-choice DNA recombination, and propose that other events of recombination between short direct repeats might be a result of the same process. 相似文献
10.
Bernard C. Broughton Nik Barbet Johanne Murray Felicity Z. Watts Marcel H. M. Koken Alan R. Lehmann Antony M. Carr 《Molecular & general genetics : MGG》1991,228(3):470-472
Summary Ten DNA repair (rad) genes from the fission yeast, Schizosaccharomyces pombe were mapped to the 17 NotI fragments of the three chromosomes. Nine of the genes map to chromosome I, but there is no evidence for significant clustering. 相似文献
11.
Differential expression and requirements for Schizosaccharomyces pombe RAD52 homologs in DNA repair and recombination 总被引:3,自引:0,他引:3
下载免费PDF全文

van den Bosch M Zonneveld JB Vreeken K de Vries FA Lohman PH Pastink A 《Nucleic acids research》2002,30(6):1316-1324
In fission yeast two RAD52 homologs have been identified, rad22A+ and rad22B+. Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B+ in mitotically dividing cells is very low in comparison with rad22A+ but is strongly enhanced after induction of meiosis, in contrast to rad22A+. Rad22B mutant cells are not hypersensitive to DNA-damaging agents (X-rays, UV and cisplatin) and display normal levels of recombination. In these respects the Schizosaccharomyces pombe rad22B mutant resembles the weak phenotype of vertebrate cells deficient for RAD52. Mutation of rad22A+ leads to severe sensitivity to DNA-damaging agents and to defects in recombination. In a rad22Arad22B double mutant a further increase in sensitivity to DNA-damaging agents and additional mitotic recombination defects were observed. The data presented here indicate that Rad22A and Rad22B have overlapping roles in repair and recombination, although specialized functions for each protein cannot be excluded. 相似文献
12.
In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs. 相似文献
13.
The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles. 相似文献
14.
DNA synthesis in the fission yeast Schizosaccharomyces pombe 总被引:15,自引:0,他引:15
C J Bostock 《Experimental cell research》1970,60(1):16-26
15.
Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. 总被引:16,自引:6,他引:16
下载免费PDF全文

Centromeric DNA in the fission yeast Schizosaccharomyces pombe was isolated by chromosome walking and by field inversion gel electrophoretic fractionation of large genomic DNA restriction fragments. The centromere regions of the three chromosomes were contained on three SalI fragments (120 kilobases [kb], chromosome III; 90 kb, chromosome II; and 50 kb, chromosome I). Each fragment contained several repetitive DNA sequences, including repeat K (6.4 kb), repeat L (6.0 kb), and repeat B, that occurred only in the three centromere regions. On chromosome II, these repeats were organized into a 35-kb inverted repeat that included one copy of K and L in each arm of the repeat. Site-directed integration of a plasmid containing the yeast LEU2 gene into K repeats at each of the centromeres or integration of an intact K repeat into a chromosome arm had no effect on mitotic or meiotic centromere function. The centromeric repeat sequences were not transcribed and possessed many of the properties of constitutive heterochromatin. Thus, S. pombe is an excellent model system for studies on the role of repetitive sequence elements in centromere function. 相似文献
16.
17.
18.
The meiotic recombination hot spot ura4A (formerly ura4-aim) of Schizosaccharomyces pombe was observed at the insertion of the ura4+ gene 15 kb centromere-proximal to ade6 on chromosome III. Crosses heterozygous for the insertion showed frequent conversion at the heterology with preferential loss of the insertion. This report concerns the characterization of 12 spontaneous ura4A mutants. A gradient of conversion ranging from 18% at the 5' end to 6% at the 3' end was detected. A novel phenomenon also was discovered: a mating-type-related bias of conversion. The allele entering with the h+ parent acts preferentially as the acceptor for conversion (ratio of 3:2). Tetrad analysis of two-factor crosses showed that heteroduplex DNA is predominantly asymmetrical, enters from the 5' end, and more often than not covers the entire gene. Restoration repair of markers at the 5' end was inferred. Random spore analyses of two-factor crosses and normalization of prototroph-recombinant frequencies to physical distance led to the demonstration of map expansion: Crosses involving distant markers yielded recombinant frequencies higher than the sum of the frequencies measured in the subintervals. Finally, marker effects on recombination were defined for two of the ura4A mutations. 相似文献
19.
20.
Molecular analysis of DNA junctions produced by illegitimate recombination in human cells.
下载免费PDF全文

In a human HeLa derived-cell line carrying permanently a single integrated copy of an SV40 shuttle vector, the transient expression of the SV40 T-antigen led to the production of heterogeneous populations of circular DNA molecules which retained both integrated vector and its surrounding cellular sequences. Comparison between the integrated copy and the linear maps of 80 different plasmids rescued in bacteria suggested that the formation of circular DNA was the result of bidirectional replication from the SV40 origin of replication followed by a single intramolecular joining leading to the cyclization of the replicated molecules. Sequence analysis of 45 recombinational junctions demonstrated that the cyclization occurred via illegitimate recombination process which did not require preferential nucleotide sequence at the joining sites. However, extensive characterization of recombination junctions revealed that the sequences involved in the recombination at each side of the SV40 origin of replication were not randomly distributed, suggesting the presence of regions which were more prone to be involved in the illegitimate recombination process in human cells. Search of common features usually implied in illegitimate recombination in mammalian cells revealed some association of these regions with palindromes, A + T-rich DNA segments, alternating purine/pyrimidine sequences and Alu family repeats. 相似文献