首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glial glutamate receptors: likely actors in brain signaling.   总被引:1,自引:0,他引:1  
V I Teichberg 《FASEB journal》1991,5(15):3086-3091
It has become clear that the neurotransmitter glutamate does not confine its excitatory effects to central nervous system neurons but interacts also with glial cells. Neurons and glia share the same types of ionotropic and metabotropic glutamate receptors except for the N-methyl-D-aspartate receptor, which is not found on glia. Applied on cultured glial cells, glutamate regulates the opening of receptor channels, activates second messengers, and causes the release of neuroactive compounds. Although glutamate and glutamate receptors confer on cultured glia the ability to receive and emit signals, it remains to be established whether glial signaling takes place in vivo. The chick Bergmann glial cells provide a unique experimental system with which to test the contribution of glial glutamate receptors to neuronal electrical activity. These cells are the exclusive carriers in the cerebellum of functional kainate receptors. The synaptic location of these receptors, their ion channel properties, and their regulation by phosphorylation reactions suggest that glial kainate receptors play a role in regulating synaptic efficacy and plasticity. If proved, this concept may require a modification of the anatomical and functional definition of a synapse to include a glial component as well.  相似文献   

3.
Glial cells of the cerebellum originate from cells of the ventricular germinative layer, but their lineage has not been fully elucidated. For studying the glial cell lineage in vivo by retrovirus-mediated gene transfer, we introduced a marker retrovirus into the ventricular germinative layer of embryonic day 13 mice. In the resulting adult cerebella, virus-labeled glial cells were grouped in discrete clusters, and statistical analysis showed that these clusters represented clones in high probability. Of 71 of the virus-labeled glial clusters, 33 clusters were composed of astrocytes/Bergmann glia, 10 were composed of only white matter astrocytes, and 24 were composed of only oligodendrocytes. No glial clusters contained virus-labeled neurons. These results suggest that astrocytes/Bergmann glia, white matter astrocytes and oligodendrocytes immediately arise from separate glial precursors: these three glial lineages may diverge in the course of cerebellar development.  相似文献   

4.
Granule cell migration influences the laminar structure of the cerebellum and thereby affects cerebellum function. Bergmann glia are derived from radial glial cells and aid in granule cell radial migration by providing a scaffold for migration and by mediating interactions between Bergmann glia and granule cells. In this review, we summarize Bergmann glia characteristics and the mechanisms underlying the effect of Bergmann glia on the radial migration of granule neurons in the cerebellum. Furthermore, we will focus our discussion on the important factors involved in glia-mediated radial migration so that we may elucidate the possible mechanistic pathways used by Bergmann glia to influence granule cell migration during cerebellum development.  相似文献   

5.
The Bergmann glia is a unipolar astrocyte in the cerebellar cortex, displaying a tight association with Purkinje cells. The cell bodies of Bergmann glia are located in a row around Purkinje cell somata; they extend radially arranged Bergmann fibers which enwrap the synapses on the Purkinje cell dendrites. It is well known that Bergmann glial somata migrate from the ventricular zone through the mantle zone, forming an epithelium-like lining in the Purkinje cell layer during development. However, the mechanism of the monolayer formation of Bergmann glia is poorly understood. Several reports have suggested that Notch signaling plays instructive roles in promoting the identities of several types of glial cells, including Bergmann glia. Moreover, Notch receptors are expressed in Bergmann glia during development. Here, we have deleted the Notch1, Notch2 and RBP-J genes in the Bergmann glia by GFAP-driven, Cre-mediated recombination, to study the role of Notch-RBP-J-signaling in the monolayer formation of Bergmann glia. Notch1/2- and RBP-J-conditional mutant mice showed disorganization of Bergmann fibers, irregularities of the Bergmann glial lining and aberrant localization of Bergmann glia in the molecular layer. Thus, Notch-RBP-J signaling plays crucial roles in the monolayer formation and morphogenesis of Bergmann glia.  相似文献   

6.
A peroxidase-conjugated avidin–biotin complex was used to detect endogenous biotin-containing proteins in mouse cerebellum. By this method, Bergmann glial cells were found to be strongly labelled in the adult mouse cerebellum. Developmentally, cells in the granular layer, probably astrocytes, appeared to be labelled around postnatal 10-day (P10). Their labelling decreased after P20, although the positive-labelling remained in the Bergmann glial cells up to the adult stage. The findings were confirmed by using a Alexa Fluor 488-conjugated streptavidin technique. The labelling was not affected by routine hydrogen peroxide treatment, but it was eliminated by avidin–biotin blocking. By another transblot method, the reactive proteins in the mouse cerebellum were found to be 120?kDa (the strongest one) and 75?kDa. For electron microscopy, a gold-conjugated anti-biotin antibody was immunoreacted to the mitochondria of Bergmann glial cells. These results suggest that endogenous biotin-containing proteins are abundant in the Bergmann glial cells. Therefore, the avidin–biotin complex method is useful for detecting Bergmann glial cells, probably because of the difference of biotin metabolism in the cerebellar glial cells.  相似文献   

7.
8.
9.
Intense expression of mRNA of endothelin-B receptor (ETBR) has been detected in the Bergmann glia of cerebellum by in situ hybridization, but the intracellular localization has not been reported because of the absence of a useful antibody for immunohistochemical investigations. We made polyclonal antibodies against the carboxyl terminus of human ETBR (420-442) and ETAR (403-427), and performed light- and electron-microscopic immunohistochemistry of the wild-type and ETBR-deficient (sl/sl) rat cerebella. Localization of ETBR during postnatal development was examined by double-staining immunofluorescence using antibodies against ETBR and S-100 beta. In the wild-type rats, ETBR immunoreactivity appeared from postnatal day 5 (P5) and was distributed diffusely in the processes and cell bodies of S-100 beta-positive glial cells. By P14, ETBR immunoreactivity was concentrated in the Golgi apparatus of Bergmann glial cell soma and the plasma membrane of its processes. The ETBR-positive astrocytes in the granular layer decreased in number during P7-14 and had disappeared by week 3. At 3 weeks, ETBR immunoreactivity was restricted to the Golgi apparatus of Bergmann glia. In the sl/sl rats, ETBR immunoreactivity was not observed at all. In contrast to ETBR, ETAR immunoreactivity appeared transiently in the cytoplasm of all astrocytes (Bergmann glia and astrocytes in the granular layer) in the 9- to 14-day-old wild rats and 7- to 14-day-old sl/sl rats, and disappeared within 3 weeks in both. Granule cells did not express immunoreactivity for ETBR and ETAR from the neonatal stage to adulthood. Changes in the intracellular localization of ETBR and transient expression of ETAR may be correlated with the changes of glial functions and proliferation during postnatal development of rat cerebellum.  相似文献   

10.
Notch family molecules are thought to be negative regulators of neuronal differentiation in early brain development. After expression in the embryonic period, Notch2 continues to be expressed postnatally in the specific regions in the rodent brain. Here, we examined Notch2 expression in the postnatal mouse brain using lacZ knockin animals at the Notch2 locus. Notch2 expression was observed in the developing cerebellum and hippocampus, characteristic regions where neurogenesis persists after birth. Double staining of sections revealed that Notch2 was expressed by Bergmann glia in the cerebellum, radial glia in the hippocampus, and some astrocytes in both regions. Notch2 expression by glial cells was clearly confirmed in dissociated cell cultures. Interestingly, neocortical glia, many of which did not express Notch2 in vivo, did express Notch2 in a dissociated culture condition. The triple staining of dissociated cell cultures revealed that stronger Notch2 expression correlated with the immature type of glial gene expressions: stronger vimentin and weaker glial fibrillary acidic protein expressions. In addition, Notch2 expression correlated with the incorporation of bromodeoxyuridine both in vivo and in vitro. Thus, these findings demonstrate that Notch2 is expressed not only by neuronal cells in the embryonic brain, but also by glial cells in the postnatal brain, and that its expression negatively correlates with glial differentiation, proposing its novel function as a negative regulator of glial differentiation in mammalian brain development.  相似文献   

11.
The nervous system consists of neurons and glial cells. Neurons generate and propagate electrical and chemical signals, whereas glia function mainly to modulate neuron function and signaling. Just as there are many different kinds of neurons with different roles, there are also many types of glia that perform diverse functions. For example, glia make myelin; modulate synapse formation, function, and elimination; regulate blood flow and metabolism; and maintain ionic and water homeostasis to name only a few. Although proteomic approaches have been used extensively to understand neurons, the same cannot be said for glia. Importantly, like neurons, glial cells have unique protein compositions that reflect their diverse functions, and these compositions can change depending on activity or disease. Here, I discuss the major classes and functions of glial cells in the central and peripheral nervous systems. I describe proteomic approaches that have been used to investigate glial cell function and composition and the experimental limitations faced by investigators working with glia.The nervous system is composed of neurons and glial cells that function together to create complex behaviors. Traditionally, glia have been considered to be merely passive contributors to brain function, resulting in a pronounced neurocentric bias among neuroscientists. Some of this bias reflects a paucity of knowledge and tools available to study glia. However, this view is rapidly changing as new tools, model systems (culture and genetic), and technologies have permitted investigators to show that glia actively sculpt and modulate neuronal properties and functions in many ways. Glia have been thought to outnumber neurons by 10:1, although more recent studies suggest the ratio in the human brain is closer to 1:1 with region-specific differences (1). There are many different types of glia, some of which are specific to the central nervous system (CNS),1 whereas others are found only in the peripheral nervous system (PNS). The main types of CNS glia include astrocytes, oligodendrocytes, ependymal cells, radial glia, and microglia. In the PNS, the main glial cells are Schwann cells, satellite cells, and enteric glia. These cells differ and are classified according to their morphologies, distinct anatomical locations in the nervous system, functions, developmental origins, and unique molecular compositions. Among the different classes of glia there are additional subclasses that reflect further degrees of specialization. In this review, I will discuss the characteristics and functions of the major glial cell types including astrocytes, microglia, and the myelin-forming oligodendrocytes (CNS) and Schwann cells (PNS). Because of space limitations, it is impossible to give a complete accounting of all glia and what is known about each of these cell types. Therefore, I encourage the interested reader to refer to some of the many excellent reviews referenced below that focus on individual glial cell types. Finally, I will discuss proteomic studies of glial cell function and some of the unique challenges investigators face when working with these cells.  相似文献   

12.
Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line.  相似文献   

13.
Radial glial cells are astrocyte precursors, which are transiently present in the developing central nervous system and transform eventually into astrocytes in the cerebral cortex and into Bergmann glia in the cerebellum. Previous reports indicate that the transformation from radial glia to astrocytes can be reversed by diffusible chemical signals derived from embryonic forebrain in vitro and by freezing injury in vivo. But there is no direct evidence proving that mature astrocytes can de-differentiate into radial glial cells. Here we show that purified astrocytes could de-differentiate into radial glial-like cells (RGLCs) in vitro with freeze-thaw stimulation. RGLCs had the expression of markers for radial glia including Nestin and Pax6, and astrocyte markers, the glial fibrillary acidic protein and Vimentin. Cortical neurons, when co-cultured with RGLCs, migrated along the processes of RGLCs at an average speed of 26.26 +/- 3.36 microm/h. Moreover, the proliferation of RGLCs was significantly promoted by epidermal growth factor (EGF) at the concentration of 10-30 ng/ml. These results reveal that low temperature induces astrocytes to de-differentiate into immature RGLCs, which provides an in vitro model to investigate mechanisms of astroglial cells de-differentiation.  相似文献   

14.
The forms, disposition, and cytoskeletal contents of astroglia in immature mouse cerebellum were studied by immunocytochemical staining with antisera against two intermediate filament proteins, vimentin (Vim) (58,000 daltons) and glial filament protein (GF) (51,000 daltons). From embryonic (E) Day 15 to postnatal (P) Day 2, Vim is expressed in cells throughout the cerebellar anlage, including radial glia and Bergmann fibers, cells with amorphous shapes and 2–3 processes, and thick longitudinal elements oriented parallel to axons within axon tracts. GF is not expressed during the first few postnatal days, but by P7, there is a dramatic increase in GF-positive astrocyte-like cells in the putative white matter that are more densely stained and more crowded than at any other age. Between P7 and P14 all astrocytes throughout the cerebellum express both Vim and GF. From P21 on, Vim expression is progressively rarer in all astrocytes except for Bergmann fibers, and GF-positive astrocytes become less numerous. These findings raise two issues: (a) the lineage and relationships of cells expressing Vim and GF; (b) Since GF-positive cells appear as axon ingrowth ceases, axons must grow in a terrain comprised of glial cells that have a different cytoskeletal composition (vimentin), reflecting a less differentiated state, than mature astrocytes or than the GF-rich astrocytes that proliferate after injury in adult CNS.  相似文献   

15.
The effects of neonatal systemic administration of the neurotoxin 6-hydroxydopamine (6-OHDA) on cerebellum development and behavior were studied in juvenile rats. The methods employed were immunohistochemistry, in situ hybridization, ligand binding, and behavioral testing. The results revealed, for the first time, that 6-OHDA treatment alters Bergmann glial cells and reduced the expression GABAA receptor subtypes α1 and α6 especially in granule cells. The Bergmann glial cells were abnormally located and structurally different (e.g., no intimate associations with Purkinje cells). Significant microglial activation was also observed. The animals showed impairment in behavior, especially in their orientation to a novel environment. Recent data on neuron–glia interactions support the conclusion that the observed structural changes in Bergmann glia and granular neurons disrupted the normal functioning of the Purkinje cells which then in turn resulted in the impaired sensory-motor coordination at least in juvenile rats. This paper is a summary of previously published work and some recent data in this field obtained at our laboratory. Special issue dedicated to Dr. Simo S. Oja  相似文献   

16.
SC1 is an extracellular matrix molecule prominent in the mammalian brain. In the cerebellum, SC1 localizes to Bergmann glial cells and perisynaptic glial processes that envelop synapses in the molecular layer. In the present study, confocal microscopy revealed a punctate distribution of SC1 along Bergmann glial fibers that colocalized with the intermediate filament GFAP when fibers were viewed in cross-section. Immunoelectron microscopy showed that the punctate SC1 pattern corresponded to the localization of SC1 in multivesicular bodies situated within Bergmann glial fibers. The pattern of SC1 localization was not disrupted following hyperthermia or pilocarpine-induced status epilepticus. The present study suggests that SC1 protein may reach its destination in perisynaptic glial processes and glial endfeet by transport along Bergmann glial fibers in multivesicular bodies and that this process is preserved following stress.  相似文献   

17.
The biochemical effects triggered by the action of glutamate, the main excitatory amino acid, on a specialized type of glia cells, Bergmann glial cells of the cerebellum, are a model system with which to study glia-neuronal interactions. Neuron to Bergmann glia signaling is involved in early stages of development, mainly in cell migration and synaptogenesis. Later, in adulthood, these cells have an important role in the maintenance and proper function of the synapses that they surround. Major molecular targets of this cellular interplay are glial glutamate receptors and transporters, both of which sense synaptic activity. Glutamate receptors trigger a complex network of signaling cascades that involve Ca(2+) influx and lead to a differential gene-expression pattern. In contrast, Bergmann glia glutamate transporters participate in the removal of the neurotransmitter from the synaptic cleft and act also as signal transducers that regulate, in the short term, their own activity. These exciting findings strengthen the concept of active participation of glial cells in synaptic transmission and the involvement of neuron-glia circuits in the processing of brain information.  相似文献   

18.
NG2 (nerve/glial antigen2)-expressing cells represent the largest population of postnatal progenitors in the central nervous system and have been classified as oligodendroglial progenitor cells, but the fate and function of these cells remain incompletely characterized. Previous studies have focused on characterizing these progenitors in the postnatal and adult subventricular zone and on analyzing the cellular and physiological properties of these cells in white and gray matter regions in the forebrain. In the present study, we examine the types of neural progeny generated by NG2 progenitors in the cerebellum by employing genetic fate mapping techniques using inducible Cre–Lox systems in vivo with two different mouse lines, the Plp-Cre-ERT2/Rosa26-EYFP and Olig2-Cre-ERT2/Rosa26-EYFP double-transgenic mice. Our data indicate that Olig2/Plp-positive NG2 cells display multipotential properties, primarily give rise to oligodendroglia but, surprisingly, also generate Bergmann glia, which are specialized glial cells in the cerebellum. The NG2+ cells also give rise to astrocytes, but not neurons. In addition, we show that glutamate signaling is involved in distinct NG2+ cell-fate/differentiation pathways and plays a role in the normal development of Bergmann glia. We also show an increase of cerebellar oligodendroglial lineage cells in response to hypoxic–ischemic injury, but the ability of NG2+ cells to give rise to Bergmann glia and astrocytes remains unchanged. Overall, our study reveals a novel Bergmann glia fate of Olig2/Plp-positive NG2 progenitors, demonstrates the differentiation of these progenitors into various functional glial cell types, and provides significant insights into the fate and function of Olig2/Plp-positive progenitor cells in health and disease.  相似文献   

19.
20.
A peroxidase-conjugated avidin-biotin complex was used to detect endogenous biotin-containing proteins in mouse cerebellum. By this method, Bergmann glial cells were found to be strongly labelled in the adult mouse cerebellum. Developmentally, cells in the granular layer, probably astrocytes, appeared to be labelled around postnatal 10-day (P10). Their labelling decreased after P20, although the positive-labelling remained in the Bergmann glial cells up to the adult stage. The findings were confirmed by using a Alexa Fluor 488-conjugated streptavidin technique. The labelling was not affected by routine hydrogen peroxide treatment, but it was eliminated by avidin-biotin blocking. By another transblot method, the reactive proteins in the mouse cerebellum were found to be 120 kDa (the strongest one) and 75 kDa. For electron microscopy, a gold-conjugated anti-biotin antibody was immunoreacted to the mitochondria of Bergmann glial cells. These results suggest that endogenous biotin-containing proteins are abundant in the Bergmann glial cells. Therefore, the avidin-biotin complex method is useful for detecting Bergmann glial cells, probably because of the difference of biotin metabolism in the cerebellar glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号