首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the γ-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.  相似文献   

2.
According to the selfish operon hypothesis, the clustering of genes and their subsequent organization into operons is beneficial for the constituent genes because it enables the horizontal gene transfer of weakly selected, functionally coupled genes. The majority of these are expected to be non-essential genes. From our analysis of the Escherichia coli genome, we conclude that the selfish operon hypothesis is unlikely to provide a general explanation for clustering nor can it account for the gene composition of operons. Contrary to expectations, essential genes with related functions have an especially strong tendency to cluster, even if they are not in operons. Moreover, essential genes are particularly abundant in operons.  相似文献   

3.

Background

Shuffling and disruption of operons and horizontal gene transfer are major contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon' hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via horizontal gene transfer, although their retention could be favored by the advantage of coregulation of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities.

Results

Since a substantial number of operons have been identified experimentally in only a few model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The phylogenetic affinities within these predicted operons were assessed first by sequence similarity analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous cases of apparent horizontal transfer of entire operons were detected. However, it was shown that apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene by a horizontally transferred ortholog from a taxonomically distant organism without change of the local gene organization. On rarer occasions, operons might have evolved via independent assembly, in part from horizontally acquired genes.

Conclusions

The discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level.
  相似文献   

4.
The evolutionary history of biological pathways is of general interest, especially in this post-genomic era, because it may provide clues for understanding how complex systems encoded on genomes have been organized. To explain how pathways can evolve de novo, some noteworthy models have been proposed. However, direct reconstruction of pathway evolutionary history both on a genomic scale and at the depth of the tree of life has suffered from artificial effects in estimating the gene content of ancestral species. Recently, we developed an algorithm that effectively reconstructs gene-content evolution without these artificial effects, and we applied it to this problem. The carefully reconstructed history, which was based on the metabolic pathways of 160 prokaryotic species, confirmed that pathways have grown beyond the random acquisition of individual genes. Pathway acquisition took place quickly, probably eliminating the difficulty in holding genes during the course of the pathway evolution. This rapid evolution was due to massive horizontal gene transfers as gene groups, some of which were possibly operon transfers, which would convey existing pathways but not be able to generate novel pathways. To this end, we analyzed how these pathways originally appeared and found that the original acquisition of pathways occurred more contemporaneously than expected across different phylogenetic clades. As a possible model to explain this observation, we propose that novel pathway evolution may be facilitated by bidirectional horizontal gene transfers in prokaryotic communities. Such a model would complement existing pathway evolution models.  相似文献   

5.
Weisstein AE  Spencer HG 《Genetics》2003,165(1):205-222
A small number of mammalian loci exhibit genomic imprinting, in which only one copy of a gene is expressed while the other is silenced. At some such loci, the maternally inherited allele is inactivated; others show paternal inactivation. Several hypotheses have been put forward to explain how this genetic system could have evolved in the face of the selective advantages of diploidy. In this study, we examine the variance-minimization hypothesis, which proposes that imprinting arose through selection for reduced variation in levels of gene expression. We present an evolutionary genetic model incorporating both this selection pressure and deleterious mutations to elucidate the conditions under which imprinting could evolve. Our analysis implies that additional mechanisms such as genetic drift are required for imprinting to evolve from an initial nonimprinting state. Other predictions of this hypothesis do not appear to fit the available data as well as predictions for two alternative hypotheses, genetic conflict and the ovarian time bomb. On the basis of this evidence, we conclude that the variance-minimization hypothesis appears less adequate to explain the evolution of genomic imprinting.  相似文献   

6.
In some species, histone gene clusters consist of tandem arrays of each type of histone gene, whereas in other species the genes may be clustered but not arranged in tandem. In certain species, however, histone genes are found scattered across several different chromosomes. This study examines the evolution of histone 3 (H3) genes that are not arranged in large clusters of tandem repeats. Although H3 amino acid sequences are highly conserved both within and between species, we found that the nucleotide sequence divergence at synonymous sites is high, indicating that purifying selection is the major force for maintaining H3 amino acid sequence homogeneity over long-term evolution. In cases where synonymous-site divergence was low, recent gene duplication appeared to be a better explanation than gene conversion. These results, and other observations on gene inactivation, organization, and phylogeny, indicated that these H3 genes evolve according to a birth-and-death process under strong purifying selection. Thus, we found little evidence to support previous claims that all H3 proteins, regardless of their genome organization, undergo concerted evolution. Further analyses of the structure of H3 proteins revealed that the histones of higher eukaryotes might have evolved from a replication-independent-like H3 gene.  相似文献   

7.
Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.  相似文献   

8.
9.
10.
Histones are small basic proteins encoded by a multigene family and are responsible for the nucleosomal organization of chromatin in eukaryotes. Because of the high degree of protein sequence conservation, it is generally believed that histone genes are subject to concerted evolution. However, purifying selection can also generate a high degree of sequence homogeneity. In this study, we examined the long-term evolution of histone H4 genes to determine whether concerted evolution or purifying selection was the major factor for maintaining sequence homogeneity. We analyzed the proportion (p(S)) of synonymous nucleotide differences between the H4 genes from 59 species of fungi, plants, animals, and protists and found that p(S) is generally very high and often close to the saturation level (p(S) ranging from 0.3 to 0.6) even though protein sequences are virtually identical for all H4 genes. A small proportion of genes showed a low level of p(S) values, but this appeared to be caused by recent gene duplication. Our findings suggest that the members of this gene family evolve according to the birth-and-death model of evolution under strong purifying selection. Using histone-like genes in archaebacteria as outgroups, we also showed that H1, H2A, H2B, H3, and H4 histone genes in eukaryotes form separate clusters and that these classes of genes diverged nearly at the same time, before the eukaryotic kingdoms diverged.  相似文献   

11.
New enzymes often evolve by duplication and divergence of genes encoding enzymes with promiscuous activities that have become important in the face of environmental opportunities or challenges. Amplifications that increase the copy number of the gene under selection commonly amplify many surrounding genes. Extra copies of these coamplified genes must be removed, either during or after evolution of a new enzyme. Here we report that amplicon remodeling can begin even before mutations occur in the gene under selection. Amplicon remodeling and mutations elsewhere in the genome that indirectly increase fitness result in complex population dynamics, leading to emergence of clones that have improved fitness by different mechanisms. In this work, one of the two most successful clones had undergone two episodes of amplicon remodeling, leaving only four coamplified genes surrounding the gene under selection. Amplicon remodeling in the other clone resulted in removal of 111 genes from the genome, an acceptable solution under these selection conditions, but one that would certainly impair fitness under other environmental conditions.  相似文献   

12.
Changes in genetic regulation contribute to adaptations in natural populations and influence susceptibility to human diseases. Despite their potential phenotypic importance, the selective pressures acting on regulatory processes in general and gene expression levels in particular are largely unknown. Studies in model organisms suggest that the expression levels of most genes evolve under stabilizing selection, although a few are consistent with adaptive evolution. However, it has been proposed that gene expression levels in primates evolve largely in the absence of selective constraints. In this article, we discuss the microarray-based observations that led to these disparate interpretations. We conclude that in both primates and model organisms, stabilizing selection is likely to be the dominant mode of gene expression evolution. An important implication is that mutations affecting gene expression will often be deleterious and might underlie many human diseases.  相似文献   

13.
Having an extra copy of a gene is thought to provide some functional redundancy, which results in a higher rate of evolution in duplicated genes. In this article, we estimate the impact of gene duplication on the selection of tuf paralogs, and we find that in the absence of gene conversion, tuf paralogs have evolved significantly slower than when gene conversion has been a factor in their evolution. Thus, tuf gene copies evolve under a selective pressure that ensures their functional uniformity, and gene conversion reduces selection against amino acid substitutions that affect the function of the encoded protein, EF-Tu.  相似文献   

14.
15.
Yi G  Jung J 《Bioinformation》2011,7(5):251-256
Identifying genomic regions that descended from a common ancestor helps us study the gene function and genome evolution. In distantly related genomes, clusters of homologous gene pairs are evidently used in function prediction, operon detection, etc. Currently, there are many kinds of computational methods that have been proposed defining gene clusters to identify gene families and operons. However, most of those algorithms are only available on a data set of small size. We developed an efficient gene clustering algorithm that can be applied on hundreds of genomes at the same time. This approach allows for large-scale study of evolutionary relationships of gene clusters and study of operon formation and destruction. An analysis of proposed algorithms shows that more biological insight can be obtained by analyzing gene clusters across hundreds of genomes, which can help us understand operon occurrences, gene orientations and gene rearrangements.  相似文献   

16.
Conservation and coevolution in the scale-free human gene coexpression network   总被引:12,自引:0,他引:12  
The role of natural selection in biology is well appreciated. Recently, however, a critical role for physical principles of network self-organization in biological systems has been revealed. Here, we employ a systems level view of genome-scale sequence and expression data to examine the interplay between these two sources of order, natural selection and physical self-organization, in the evolution of human gene regulation. The topology of a human gene coexpression network, derived from tissue-specific expression profiles, shows scale-free properties that imply evolutionary self-organization via preferential node attachment. Genes with numerous coexpressed partners (the hubs of the coexpression network) evolve more slowly on average than genes with fewer coexpressed partners, and genes that are coexpressed show similar rates of evolution. Thus, the strength of selective constraints on gene sequences is affected by the topology of the gene coexpression network. This connection is strong for the coding regions and 3' untranslated regions (UTRs), but the 5' UTRs appear to evolve under a different regime. Surprisingly, we found no connection between the rate of gene sequence divergence and the extent of gene expression profile divergence between human and mouse. This suggests that distinct modes of natural selection might govern sequence versus expression divergence, and we propose a model, based on rapid, adaptation-driven divergence and convergent evolution of gene expression patterns, for how natural selection could influence gene expression divergence.  相似文献   

17.
J. G. Lawrence  J. R. Roth 《Genetics》1996,143(4):1843-1860
A model is presented whereby the formation of gene clusters in bacteria is mediated by transfer of DNA within and among taxa. Bacterial operons are typically composed of genes whose products contribute to a single function. If this function is subject to weak selection or to long periods with no selection, the contributing genes may accumulate mutations and be lost by genetic drift. From a cell's perspective, once several genes are lost, the function can be restored only if all missing genes were acquired simultaneously by lateral transfer. The probability of transfer of multiple genes increases when genes are physically proximate. From a gene's perspective, horizontal transfer provides a way to escape evolutionary loss by allowing colonization of organisms lacking the encoded functions. Since organisms bearing clustered genes are more likely to act as successful donors, clustered genes would spread among bacterial genomes. The physical proximity of genes may be considered a selfish property of the operon since it affects the probability of successful horizontal transfer but may provide no physiological benefit to the host. This process predicts a mosaic structure of modern genomes in which ancestral chromosomal material is interspersed with novel, horizontally transferred operons providing peripheral metabolic functions.  相似文献   

18.
In many species of the protist phylum Apicomplexa, ribosomal RNA (rRNA) gene copies are structurally and functionally heterogeneous, owing to distinct requirements for rRNA-expression patterns at different developmental stages. The genomic mechanisms underlying the maintenance of this system over long-term evolutionary history are unclear. Therefore, the aim of this study was to investigate what processes underlie the long-term evolution of apicomplexan 18S genes in representative species. The results show that these genes evolve according to a birth-and-death model under strong purifying selection, thereby explaining how divergent 18S genes are generated over time while continuing to maintain their ability to produce fully functional rRNAs. In addition, it was found that Cryptosporidium parvum undergoes a rapid form of birth-and-death evolution that may facilitate host-specific adaptation, including that of type I and II strains found in humans. This represents the first case in which an rRNA gene family has been found to evolve under the birth-and-death model.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号