首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonally changing photophysiological and biochemical characteristics of sea ice microalgae are interpreted with respect to light availability and measurements of nutrient concentration made at high vertical resolution (12.5 cm) during a dense bloom in the platelet ice layer of McMurdo Sound during a 6-week study in austral spring of 1989. Platelet ice algae remained highly shade adapted throughout the spring as shown by their low photoadaptive index (Ek, 3.7–8.4 μmol photons·m−2·s−1), low mean specific absorption coefficient (<0.009 m2 mg−1 Chl a), high optical cross-sectional area of photosystem II (σPSII, 3.0–8.2), and high molar ratio of fucoxanthin:chlorophyll a (mean = 1.62 ± 0.15 SD). Between 24 October and 8 November, the algae exhibited a photoacclimative response that was marked by a 30% decrease in photosynthetic efficiency (αB), a 75% decrease in maximum photosynthetic rate (PB/m), and a 60% increase in σPSII. The photochemical conversion efficiency at photosystem II (Fv/Fm= ca. 0.5) and the quantum yield of photosynthesis (ØC= 0.062– 0.078 mol C mol−1 photons) were ca. 80% of their maximal values. After 8 November, changes in algal photophysiology and biochemistry, which were inconsistent with a photoacclimation response, suggest that the platelet ice algae near the platelet/congelation ice interface became increasingly nutrient limited. The number of pennate diatoms increased threefold to 150 × 109 cells m−3 between 8 and 14 November, then remained unchanged throughout the remainder of the field season. Following the increase in cell number, Fv/Fm, ØC, and C:Chla decreased by >40%, σPSII increased by 70%; and the biochemical ratios C:N and C:Si increased 25%–30%. Nutrient depletion was apparent from the high-resolution vertical profiles, but nutrient concentrations limiting algal growth were not observed. However, nutrient concentrations at the likely site of nutrient limitation near the platelet/congelation ice interface were not measured, indicating that higher resolution sampling is necessary to fully characterize this highly variable habitat.  相似文献   

2.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

3.
The measurement of Photosynthetic rates of algae growing on the undersurface of 1. 7 m thick ice in the Canadian Arctic (Resolute Passage. N.W.T.) presents several problems. During the preparation of samples for physiological measurements, the ice algae may he exposed to salinity and temperature shocks. Fluorescence induction (the rise in in vivo Chl a fluorescence intensity during a period of millineconds) and photosynthesis-irradiance (PI) experiments examined the potential effects of salinity and temperature on the physiology of ice algae. Experimental suspensions were routinely prepared by scraping one part ire crystals (11–14%0 salinity) and attached algae from the bottom ice into four parts filtered seawater (32%0 salinity). giving a final salinity of 28–31%0. Post-dilution of melted ice scrapings with seawater suppressed photosynthetic 14C-fixation and decreased ADCMU (the area above the fluorescence induction curve measured in the presence of the inhibitor DCMC: an estimate of photosynthetic capacity) by a factor of 3–16. due to the low salinity of the melted ice scrapings. Fluorescence induction and PI experiments showed that the ice algae had a salinity optimum near 30%0, close to the ambient seawater salinity, Experiments in which the Chl a concentration was manipulated showed that ADCMU, Pam (Chl a-normalized rate of photosynthesis at light saturation), and a (photosynthetic efficiency) declined with increasing Chl a concentration. Ice algae tolerated heating (l.5°C-min-1) up to 17° C, above which ADCMU’decreased with sample temperature.  相似文献   

4.
The induction and protective role of the UV-absorbing compounds known as mycosporine-like amino acids (MAAs) were examined in sublittoral Chondrus crispus Stackh. transplanted for 2 weeks in the spring and summer to shallow water under three irradiance conditions: PAR (photosynthetically active radiation; 400–700 nm), PAR + UVA (PAR + 320– 400 nm), PAR + UVA + UVB (PAR + UVA + 280– 320 nm). Sublittoral thalli collected around Helgoland, North Sea, Germany, from 6 m below the mean low water of spring tides contained less than 0.1 mg·g−1 dry weight (DW) total MAAs, whereas eulittoral samples contained over 1 mg·g−1 DW. Transplantation to shallow water led to the immediate synthesis of three MAAs in the following temporal order: shinorine (λmax 334 nm), asterina (λmax 330 nm), and palythine (λmax 320 nm), with the shinorine content peaking and then declining after 2 days (exposure to 100 mol photons·m−2). Maximum total MAA content (2 mg·g−1 DW) also occurred after 2 days of induction, exceeding the content normally found in eulittoral samples. Furthermore, the relative proportion of the different MAAs at this time was different than that in eulittoral samples. After 2 days the total content declined to the eulittoral value, with palythine as the principal MAA. Similar data were obtained for all treatments, indicating that MAA synthesis in C. crispus was induced by PAR and not especially stimulated by UV radiation. The ability of photosystem II (PSII) to resist damage by UVB was tested periodically during the acclimation period by exposing samples to a defined UVB dose in the lab. Changes in chlorophyll fluorescence (Fv/Fm and effective quantum yield, φII) indicated that PSII function was inhibited during the initial stage of acclimation but gradually improved with time. No difference among screening treatments was detected except in spring for the samples acclimating to PAR + UVA + UVB. In this treatment Fv/Fm and φII were significantly lower than in the other treatments. During the first week of each experiment, growth rates were also significantly reduced by UVB. The reductions occurred despite maximum MAA content, indicating an incomplete protection of photosynthetic and growth-related processes.  相似文献   

5.
The impacts of ultraviolet‐B radiation (UVB) on polar sea‐ice algal communities have not yet been demonstrated. We assess the impacts of UV on these communities using both laboratory experiments on algal isolates and by modification of the in situ spectral distribution of the under‐ice irradiance. In the latter experiment, filters were attached to the upper surface of the ice so that the algae were exposed in situ to treatments of ambient levels of PAR and UV radiation, ambient radiation minus UVB, and ambient radiation minus all UV. After 16 d, significant increases in chl a and cell numbers were recorded for all treatments, but there were no significant differences among the different treatments. Bottom‐ice algae exposed in vitro were considerably less tolerant to UVB than those in situ, but this tolerance improved when algae were retained within a solid block of ice. In addition, algae extracted from brine channels in the upper meter of sea ice and exposed to PAR and UVB in the laboratory were much more tolerant of high UVB doses than were any bottom‐ice isolates. This finding indicates that brine algae may be better adapted to high PAR and UVB than are bottom‐ice algae. The data indicate that the impact of increased levels of UVB resulting from springtime ozone depletion on Antarctic bottom‐ice communities is likely to be minimal. These algae are likely protected by strong UVB attenuation by the overlying ice and snow, by other inorganic and organic substances in the ice matrix, and by algal cells closer to the surface.  相似文献   

6.
How the abundant pelagic life of the Southern Ocean survives winter darkness, when the sea is covered by pack ice and phytoplankton production is nearly zero, is poorly understood. Ice‐associated (“sympagic”) microalgae could serve as a high‐quality carbon source during winter, but their significance in the food web is so far unquantified. To better understand the importance of ice algae‐produced carbon for the overwintering of Antarctic organisms, we investigated fatty acid (FA) and stable isotope compositions of 10 zooplankton species, and their potential sympagic and pelagic carbon sources. FA‐specific carbon stable isotope compositions were used in stable isotope mixing models to quantify the contribution of ice algae‐produced carbon (αIce) to the body carbon of each species. Mean αIce estimates ranged from 4% to 67%, with large variations between species and depending on the FA used for the modelling. Integrating the αIce estimates from all models, the sympagic amphipod Eusirus laticarpus was the most dependent on ice algal carbon (αIce: 54%–67%), and the salp Salpa thompsoni showed the least dependency on ice algal carbon (αIce: 8%–40%). Differences in αIce estimates between FAs associated with short‐term vs. long‐term lipid pools suggested an increasing importance of ice algal carbon for many species as the winter season progressed. In the abundant winter‐active copepod Calanus propinquus, mean αIce reached more than 50% in late winter. The trophic carbon flux from ice algae into this copepod was between 3 and 5 mg C m?2 day?1. This indicates that copepods and other ice‐dependent zooplankton species transfer significant amounts of carbon from ice algae into the pelagic system, where it fuels the food web, the biological carbon pump and elemental cycling. Understanding the role of ice algae‐produced carbon in these processes will be the key to predictions of the impact of future sea ice decline on Antarctic ecosystem functioning.  相似文献   

7.
Terrestrial green plants absorb photosynthetically active radiation (PAR; 400–700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.  相似文献   

8.
A phytochrome-like protein was detected in extracts from the red algae Corallina elongata and Gelidium sp., from the brown algae Cystoseira abiesmarina and Cystoseira tamariscifolia, and from the green algae Ulva rigida, Enteromorpha compressa and Chara hispida. Relative amounts of the photoreversible protein were determined by measurement of Δ (ΔA) values of the crude extract. SDS gel electrophoresis and immunoblotting with monoclonal antibodies directed to phytochrome from etiolated maize and oat seedlings revealed only one phytochrome-related band with apparent molecular weight of 130 kDa. The absorption difference spectrum after partial purification showed a “normal” absorption band (λmax = 670 nm) for the Pr form but only a very weak band (λmax = 705 nm) for the “Pfr form”.  相似文献   

9.
Abstract Stress physiology on the reproductive cells of Antarctic macroalgae remained unstudied. Ascoseira mirabilis is endemic to the Antarctic region, an isolated ecosystem exposed to extreme environmental conditions. Moreover, stratospheric ozone depletion leads to increasing ultraviolet radiation (280–400 nm) at the earth's surface, thus it is necessary to investigate the capacity of reproductive cells to cope with different UV irradiances. This study is aimed to investigate the impact of exposure to different spectral irradiance on the photosynthetic performance, DNA damage and gamete morphology of the A. mirabilis. Gametangia, gametes and zygotes of the upper sublittoral brown alga A. mirabilis were exposed to photosynthetically active radiation (PAR = P; 400–700 nm), P + UV‐A radiation (UV‐A, 320–400 nm) and P + UV‐A + UV‐B radiation (UV‐B, 280–320 nm). Rapid photosynthesis versus irradiance curves of freshly released propagules were measured. Photosynthetic efficiencies and DNA damage (in terms of cyclobutane pyrimidine dimers) were determined after 1, 2, 4 and 8 h exposure as well as after 2 days of recovery in dim white light. Saturation irradiance (Ik) in freshly released propagules was 52 μmol photons m−2 s−1. Exposure for 1 h under 22 μmol photons m−2 s−1 of PAR significantly reduced the optimum quantum yield (Fv/Fm), suggesting that propagules are low light adapted. Furthermore, UVR significantly contributed to the photoinhibition of photosynthesis. Increasing dose as a function of exposure time additionally exacerbated the effects of different light treatments. The amount of DNA damage increased with the UV‐B dose but an efficient repair mechanism was observed in gametes pre‐exposed to a dose lower than 5.8 × 103 J m−2 of UV‐B. The results of this study demonstrate the negative impact of UV‐B radiation. However, gametes of A. mirabilis are capable of photosynthetic recovery and DNA repair when the stress factor is removed. This capacity was observed to be dependent on the fitness of the parental sporophyte.  相似文献   

10.
Sea ice microalgae are released from their relatively stable light environment to the water column seasonally, and any subsequent growth in a vertically mixed water column may depend, in part, on their photoadaptation rates. In this study we followed the time course of photoadaptation in natural sea ice algal communities from bottom ice and surface ice by measuring their photophysiological response to an artificial shift in the ambient irradiance field. Microalgae from under-ice habitats, were incubated under full sunlight (LL-HL) and microalgae from surface ice habitats were incubated under artificial light to mimic under-ice irradiance (HL-LL). During 3- to 4-day time course studies, opposite shifts in chlorophyll: carbon, α, PBm, and Ik were observed, depending on the direction of the irradiance change. First-order rate constants (k) ranged from 0.0067 to 0.29 h?1 for photosynthetic parameters, although PBm did not always show a clear change over time. Rates of photoadaptation for ice algae are comparable to k values reported for temperate phytoplankton, suggesting that sea ice algae may be equally capable of adapting to the light conditions experienced in a vertically mixed water column. This study presents the first evidence that sea ice microalgae are physiologically capable of adapting to a planktonic life and thus could serve as a seed population for polar marine phytoplankton blooms.  相似文献   

11.
Winter ice cover is a fundamental feature of north temperate aquatic systems and is associated with the least productive months of the year. Here we describe a previously unknown freshwater habitat for algal and microbial communities in the ice cover of the freshwater St. Lawrence River, Quebec, Canada. Sampling performed during winter 2005 revealed the presence of viable algal cells, such as Aulacoseira islandica (O. Müll.) Simonsen (Bacillariophyceae), and microbial assemblage growing in the ice and at the ice–water interface. Vertical channels (1–5 mm wide) containing algae were also observed. Concentrations of chl a ranged between 0.5 and 169 μg · L?1 of melted ice, with maximal concentrations found in the lower part of the ice cores. These algae have the potential to survive when ice breakup occurs and reproduce rapidly in spring/summer conditions. Freshwater ice algae can thus contribute to in situ primary production, biodiversity, and annual carbon budget in various habitats of riverine communities.  相似文献   

12.
Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (F v/F m), maximum relative electron transport rate (rETRmax), photosynthetic efficiency (α), and the photoadaptive index (E k). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0–5 cm from ice–water interface) expressed low F v/F m (0.331–0.426) and low α (0.098–0.130 (μmol photons m−2s−1)−1) in December. F v/F m and α increased in March and May (0.468–0.588 and 0.141–0.438 (μmol photons m−2s−1)−1, respectively) indicating increased photosynthetic activity. In addition, increases in rETRmax (3.3–16.4 a.u.) and E k (20–88 μmol photons m−2 s−1) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion, photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).  相似文献   

13.
Fertile Saccharina latissima sporophytes, collected in the Kongsfjorden, Ny‐Ålesund, Spitsbergen, Norway (78°56.87′ N, 11°51.64′ E) were investigated in relation to its sensitivity to experimentally enhanced ultraviolet radiation : photosynthetically active radiation (UVR : PAR) ratios. Irradiance of UVR were 4.30 W m?2 of UV‐A (320–400 nm) and 0.40 W m?2 of UV‐B (280–320 nm), and PAR (400–700 nm) was ~4.30 W m?2 (=20 µmol photons m?2 s?1). Excised soral (sporogenic) and non‐soral (vegetative) tissues were separately irradiated for 16 h at 7°C. Transmission electron microscopy showed abundant occurrence of physodes, electron dense particles (~300–600 nm) in the sorus. Paraphysis cells, with partly crystalline content, large mitochondria and abundant golgi bodies were towering over the sporangia. In soral tissue, cells were not visibly altered by the PAR + UVR irradiation. The chloroplasts, flagella and nucleus of unreleased meiospores inside the sporangial parent cells were visibly intact. Severe changes in the chloroplast structure of vegetative tissue occurred after PAR + UVR irradiation. These changes included wrinkling and dilatation of the thylakoid membranes, and appearance of electron translucent areas inside the chloroplasts. In vegetative cells exposed to PAR + UVR, the total amount of physodes, was slightly higher as in cells exposed to PAR only. Initial values of optimum quantum yield of photosystem II (Fv/Fm) were 0.743 ± 0.04 in non‐soral and 0.633 ± 0.04 in soral tissue. Vegetative tissue was observed to be more sensitive to radiant exposure of PAR and PAR + UVR compared to reproductive tissue. Under PAR, a 20% reduction in Fv/Fm was observed in non‐soral compared to no reduction in soral tissue, whereas under PAR + UVR, 60% and 33% reduction in Fv/Fm was observed in non‐soral and soral tissues, respectively. This can be attributed to the corresponding three times higher antiradical power (ARP) capacity in soral compared to non‐soral tissue.  相似文献   

14.
SUMMARY The effects of photosynthetically active radiation (PAR) and temperature on the photosynthesis of two Vietnamese brown algae, Sargassum mcclurei and S. oligocystum (Fucales), were determined by field and laboratory measurements. Dissolved oxygen sensors and pulse‐amplitude modulated (PAM) fluorometry were used for the measurements of photosynthetic efficiency. A Diving‐PAM revealed that underwater measurements of the effective quantum yield (Φ PSII ) of both species declined with increasing incident PAR, with minimum Φ PSII occurring during noon to early afternoon. Φ PSII recovered in the evening, indicating photo‐adaptation to excessive PAR. In laboratory experiments, Φ PSII also decreased under continuous exposure to 1000 μmol photons m?2 s?1; and full recovery occurred after 12 h of dark acclimatization. The net photosynthesis – PAR experiments of S. mcclurei and S. oligocystum conducted at 28°C revealed that the net photosynthetic rate quickly increased at PAR below the saturation irradiance of 361 and 301 μmol photons m?2 s?1 and nearly saturated to maximum net photosynthetic rates of 385 and 292 μg O2 gww ? 1 min?1 without photoinhibition, respectively. Gross photosynthesis and dark respiration experiments determined over a range of temperatures (12–40°C), revealed that the maximum gross photosynthetic rates of 201 and 147 μg O2 gww ? 1 min?1 occurred at 32.9 and 30.7°C for S. mcclurei and S. oligocystum, respectively. The dark respiration rates increased exponentially over the temperature ranges examined. The estimated maximum value of the maximum quantum yield occurred at 19.3 and 20.0°C and was 0.76 and 0.74, respectively. Similar to the natural habitat of the study site, these two species tolerated the relatively high temperatures and broad range of PAR. The ability of these species to recover from exposure to high PAR is one of the mechanisms that allow them to flourish in the shallow water environment.  相似文献   

15.
Biomass, chemical composition, growth rates and the photosynthetic response of natural populations of sea ice algae in McMurdo Sound, Antarctica were followed over most of the spring bloom to examine temporal variability under a relatively constant incident irradiance (ca. 1500–1700 μE · m-2· s-1 at solar noon). Collection were restricted to bottom 20 cm of the ice sheet in an area with little or no snow (0–5 cm). At low temperature and irradiance these algae normally exhibited low assimilation numbers (ca. 0.1–0.4 mg C · mg Chl-1· h-1). Average growth rates (0.02–0.45 d-1), based on changes in standing stocks, were also low. Biomass, biochemical composition, growth rates, assimilation numbers and photosynthetic efficiencies (mg C · mg Chl-1· h-1 (μE · m-2· s-1)-1) displayed large fluctuations over periods of several days during the growth season. On the other hand, Ik which is an index of photoadaptation, and Im, the optimal irradiance for photosynthesis, were relatively constant with less than twofold variation throughout our study. Substantial nutrient fluxes (3.3–8.0 mmol Si or N · m-2· d-1) were necessary to satisfy the minimum nutrient demand for the observed biomass levels and population growth rates; over the 41 days of our study, integrated nutrient demand represented 69–150 mmol N or Si · m-2, Only 5–25% of this total demand could be met by all of the nutrients in the ice sheet, if they were readily available. However, adequate amounts were present in the top few meters of the water column. With small nutrient gradients in surface waters below the sea ice, vertical eddy diffusivities on the order of 3.8–9.3 cm2· s- should supply sufficient nutrients to meet algal demand.  相似文献   

16.
Absorptions by non-phytoplankton particles and phytoplankton, and chromophoric dissolved organic matter (CDOM) were measured at 50 sites in large, shallow, Lake Taihu in winter and summer 2006 to study their seasonal and spatial variations, and their relative contributions to total absorption. The CDOM absorption was significantly higher in winter than in summer, due to degradation and release of fixed carbon in phytoplankton and submerged aquatic vegetation (SAV). The hyperbolic model was used to model the spectral absorption of CDOM, and the mean spectral slope of 6.38 nm−1 was obtained. At most sites, the spectral absorption of non-phytoplankton particles was similar to that of the total particles, demonstrating that the absorption of the total particles is dominated by the absorption of non-phytoplankton particles. In summer, phytoplankton absorption increased markedly, due to frequent algal blooms especially in Meiliang Bay. In winter, the significant increase in non-phytoplankton particle absorption resulted from the increase of inorganic particulate matter caused by sediment resuspension. Strong linear relationships were found between a d(440) and total suspended matter (TSM), organic suspended matter (OSM), and inorganic suspended matter (ISM). Strong linear relationships were also found between a ph(440), a ph(675) and chlorophyll a (Chl-a) concentration. The total relative contributions of non-phytoplankton particles over the range of photosynthetically active radiation (PAR) (400–700 nm) were 48.4 and 79.9% in summer and winter respectively. Non-phytoplankton particle absorption dominated the total absorption, especially in winter, in Lake Taihu, due to frequent sediment resuspension in the large shallow lake as a result of strong windy conditions. The results indicate that strong absorption by CDOM and non-phytoplankton particles at the blue wavelength has an impact on the spectral availability, and acts as a selection factor for the composition of the phytoplankton community, with cyanobacteria being the dominate species in Lake Taihu. Handling editor: L. Naselli-Flores  相似文献   

17.
Irradiance-dependent rates of photosynthesis and cell division of six species of microalgae isolated from the benthos, plankton and sea ice microbial community in McMurdo Sound, Antarctica were compared. Microalgae isolated from different photic environments had distinct photosynthetic and growth characteristics. For benthic and ice algae, photosynthesis saturated at 6 to 20 μE.m?2.s?1 and was photoinhibited at 10 to 80 μE.m?2.s?1 while for the planktonic algae, saturation irradiances were up to 13 times higher and photoinhibition was not detected. The slope of the light-limited portion of the P-I relationship was up to 50 times greater for the benthic algae than for either the ice or planktonic algae suggesting that benthic algae used the low irradiances more efficiently for carbon uptake. Cell division was dependent on the incubation irradiance for all but one microalga examined. The dependence of division rates on irradiance was however much smaller than for carbon uptake, suggesting that cell division buffers the influence of short term variations of irradiance on cellular metabolism.  相似文献   

18.
Depth distribution of kelp species in Helgoland (North Sea) is characterized by occurrence of Laminaria digitata in the upper sublittoral, whereas L. saccharina and L. hyperborea dominate the mid and lower sublittoral region. Laminaria digitata is fertile in summer whereas both other species are fertile in autumn/winter. To determine the light sensitivity of the propagules, zoospores of L. digitata, L. saccharina and L. hyperborea were exposed in the laboratory to different exposure times of photosynthetically active radiation (PAR; 400–700 nm), PAR + UVA radiation (UVAR; 320–400 nm) and PAR + UVAR + UVB radiation (UVBR; 280–320 nm). Optimum quantum yield of PSII and DNA damage were measured after exposure. Subsequently, recovery of photosynthetic efficiency and DNA damage repair, as well as germination rate were measured after 2 and 3 d cultivation in dim white light. Photosynthetic efficiency of all species was photoinhibited already at 20 µmol photons m−2 s−1 PAR, whereas UV radiation (UVR) had a significant additional effect on photoinhibition. Recovery of the PSII function was observed in all species but not in spores exposed to irradiation longer than 4 h of PAR + UVA + UVB and 8 h of PAR + UVA. The amount of UVB-induced DNA damage measured as cyclobutane–pyrimidine dimers (CPDs) increased with exposure time and highest damage was detected in the spores of lower subtidal L. hyperborea relative to the other two species. Significant removal of CPDs indicating repair of DNA damage was observed in all species after 2 d in low white light especially in the spores of upper subtidal L. digitata. Therefore, efficient DNA damage repair and recovery of PSII damage contributed to the germination success but not in spores exposed to 16 h of UVBR. UV absorption of zoospore suspension in L. digitata is based both on the absorption by the zoospores itself as well as by exudates in the medium. In contrast, the absorption of the zoospore suspension in L. saccharina and L. hyperborea is based predominantly on the absorption by the exudates in the medium. This study indicates that UVR sensitivity of zoospores is related to the seasonal zoospore production as well as the vertical distribution pattern of the large sporophytes.  相似文献   

19.
The effects of growth temperature on the marine chlorophyte Dunaliella tertiolecta Butcher were studied to provide a more mechanistic understanding of the role of environmental factors in regulating bio-optical properties of phytoplankton. Specific attention was focused on quantities that are relevant for modeling of growth and photosynthesis. Characteristics including chlorophyll a (chl z)-specific light absorption (a*ph(λ)), C:chl a ratio, and quantum yield for growth (φμ) varied as functions of temperature under conditions of excess light and nutrients. As temperature increased over the range examined (12°-28°C), intracellular concentrations of chl a increased by a factor of 2 and a*ph(λ) values decreased by more than 50% at blue to green wavelengths. The lower values of a*ph(λ) were due to both a decrease in the abundance of accessory pigments relative to chl a and an increase in pigment package effects arising from higher intracellular pigment concentrations. Intracellular pigment concentration increased as a consequence of higher cellular pigment quotas combined with lower cell volume. At high growth temperatures, slightly more light was absorbed on a per-cell-C basis, but the dramatic increases in growth rate from μ= 0.5 d?1 at 12° C to μ= 2.2 d?1 at 28°C were primarily due to an increase in φμ (0.015–0.041 mol C (mol quanta)?1). By comparison with previous work on this species, we conclude the effects of temperature on a*ph(λ) and φμ are comparable to those observed for light and nutrient limitation. Patterns of variability in a*ph(λ)and φμ as a function of growth rate at different temperatures are similar to those previously documented for this species grown at the same irradiance but under a range of nitrogen-limited conditions. These results are discussed in the context of implications for bio-optical modeling of aquatic primary production by phytoplankton.  相似文献   

20.
The diffuse attenuation coefficient of photosynthetically active radiation (PAR) (400–700 nm) (K d(PAR)) is one of the most important optical properties of water. Our purpose was to create K d(PAR) prediction models from the Secchi disk depth (SDD) and beam attenuation coefficient of particulate and dissolved organic matter (C t−w(PAR), excluding pure water) in the PAR range. We compare their performance and prediction precision by using the determination coefficient (r 2), relative root mean square error (RRMSE), and mean relative error (MRE). Our dataset comprised 1,067 measurements, including K d(PAR), SDD, and C t−w(PAR) taken in shallow, eutrophic, Lake Taihu, China, from 2005 to 2010. The prediction models of K d(PAR) were based on the linear model with an intercept of zero, using the inverse SDD, and the nonlinear model using SDD. The linear model generated a slope of 1.369, which was not significantly different from 1.7, the index used worldwide, but significantly lower than the value of 2.26. The nonlinear model gave a slightly more reliable prediction of K d(PAR) with a r 2 of 0.804. Compared to the SDD, C t−w(PAR) was more significantly correlated to K d(PAR) based on the linear model, with a significantly higher r 2 and lower RMSE and RE. Considering the measurement simplicity of C t−w(PAR) and data acquisition feasibility from high-frequency autonomous buoys and satellites, our results demonstrated that this prediction model reliably estimates K d(PAR), and could be used to significantly expand optical observations in an environment where the conditions for underwater PAR measurement are limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号