首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-linked mammalian inhibitor of apoptosis protein (XIAP) has been shown to bind several partners. These partners include caspase 3, caspase 9, DIABLO/Smac, HtrA2/Omi, TAB1, the bone morphogenetic protein receptor, and a presumptive E2 ubiquitin-conjugating enzyme. In addition, we show here that XIAP can bind to itself. To determine which of these interactions are required for it to inhibit apoptosis, we generated point mutant XIAP proteins and correlated their ability to bind other proteins with their ability to inhibit apoptosis. partial differential RING point mutants of XIAP were as competent as their full-length counterparts in inhibiting apoptosis, although impaired in their ability to oligomerize with full-length XIAP. Triple point mutants, unable to bind caspase 9, caspase 3, and DIABLO/HtrA2/Omi, were completely ineffectual in inhibiting apoptosis. However, point mutants that had lost the ability to inhibit caspase 9 and caspase 3 but retained the ability to inhibit DIABLO were still able to inhibit apoptosis, demonstrating that IAP antagonism is required for apoptosis to proceed following UV irradiation.  相似文献   

2.
XIAP is a mammalian inhibitor of apoptosis protein (IAP). To determine residues within the second baculoviral IAP repeat (BIR2) required for inhibition of caspase 3, we screened a library of BIR2 mutants for loss of the ability to inhibit caspase 3 toxicity in the yeast Schizosaccharomyces pombe. Four of the mutations, not predicted to affect the structure of the BIR fold, clustered together on the N-terminal region that flanks BIR2, suggesting that this is a site of interaction with caspase 3. Introduction of these mutations into full-length XIAP reduced caspase 3 inhibitory activity up to 500-fold, but did not affect its ability to inhibit caspase 9 or interact with the IAP antagonist DIABLO. Furthermore, these mutants retained full ability to inhibit apoptosis in transfected cells, demonstrating that although XIAP is able to inhibit caspase 3, this activity is dispensable for inhibition of apoptosis by XIAP in vivo.  相似文献   

3.
Granzyme M (GzmM) is a chymotrypsin-like serine protease that preferentially cuts its substrates after Met or Leu. GzmM is constitutively expressed in activated innate effector natural killer (NK) cells. GzmM-induced cell death is consistent with the kinetics of cytotoxicity of NK cells. These suggest that GzmM may play an important role in innate immunity. Our previous work demonstrated that GzmM induces caspase-dependent apoptosis. However, it is unknown about how GzmM causes caspase activation. Here, we showed that the inhibitor of the apoptosis gene family member Survivin is a physiological substrate for GzmM. GzmM hydrolyzes Survivin at Leu-138 to remove the last four C-terminal residues. The truncated form (sur-TF) is more rapidly hydrolyzed through proteasome-mediated degradation. In addition, Survivin is in complex with X-linked inhibitor of apoptosis protein (XIAP) to inhibit caspase activation as an endogenous inhibitor. Survivin cleavage by GzmM abolishes the stability of the Survivin-XIAP complex and enhances XIAP hydrolysis, which amplifies caspase-9 and 3 activation of target tumor cells. The noncleavable L138A Survivin overexpression can significantly inhibit GzmM-mediated XIAP degradation, caspase activation, and GzmM- and NK cell-induced cytotoxicity. Moreover, Survivin silencing promotes XIAP degradation and enhances GzmM-induced caspase activation as well as GzmM- and NK cell-induced cytolysis of target tumor cells.  相似文献   

4.
We investigated the expression of XIAP (X chromosome-linked inhibitor of apoptosis protein) and Smac/DIABLO, a newly identified mitochondrial apoptogenig molecule in the hippocampus following transient global ischemia. Transient global ischemia produced by two-vessel occlusion triggers the delayed neuronal death of CA1 neurons in the hippocampus. We demonstrate that CA1 neuronal loss induced by ischemia (10 min) is preceded by a selective and marked elevation of catalytically active caspase-3 in these neurons, indicative of apoptosis. XIAP (X chromosome-linked inhibitor of apoptosis protein) is a member of the inhibitor of apoptosis (IAP) gene family that, in addition to suppressing cell death by inhibition of caspases, is involved in an increasing number of signalling cascades. The present study shows alterations in the levels of XIAP and of Smac/DIABLO (second mitochondrial activator of caspase) after cerebral ischemia. The protein levels of XIAP and the number of XIAP-positive cells were regulated by cerebral ischemia in a strictly time and region dependent manner. The largest change in XIAP-IR was observed in the CA1 sub field, which is the most vulnerable area of hippocampus. The mitochondrial expression level of Smac/DIABLO increased during reperfusion. Smac/DIABLO expression was associated with alteration of the XIAP levels and the appearance of activated form of caspase-3 within the hippocampus during reperfusion in spatial and temporal manners.  相似文献   

5.
Abstract : The inhibitor of apoptosis (IAP) family of anti-apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 m M potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome-linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 m M potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal-induced N -acetly-Asp-Glu-Val-Asp-specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μ M or 1 m M glutamate did not induce caspase activity and adenoviral-mediated expression of IAPs had no influence on subsequent excitotoxic cell death.  相似文献   

6.
The inhibitor-of-apoptosis (IAP) proteins are a novel family of antiapoptotic proteins that are thought to inhibit cell death via direct inhibition of caspases. Here, we report that human malignant glioma cell lines express XIAP, HIAP-1 and HIAP-2 mRNA and proteins. NAIP was not expressed. IAP proteins were not cleaved during CD95 ligand (CD95L)-induced apoptosis, and loss of IAP protein expression was not responsible for the potentiation of CD95L-induced apoptosis when protein synthesis was inhibited. LN-18 cells are highly sensitive to CD95-mediated apoptosis, whereas LN-229 cells require co-exposure to CD95L and a protein synthesis inhibitor, CHX, to acquire sensitivity to apoptosis. Adenoviral XIAP gene transfer blocked caspase 8 and 3 processing in both cell lines in the absence of CHX. Apoptosis was blocked in the absence and in the presence of CHX. However, XIAP failed to block caspase 8 processing in LN-229 cells in the presence of CHX. There was considerable overlap of the effects of XIAP on caspase processing with those of BCL-2 and the viral caspase inhibitor crm-A. These data define complex regulatory mechanisms for CD95-mediated apoptosis in glioma cells and indicate that there may be a distinct pathway of death receptor-mediated apoptosis that is readily activated when protein synthesis is inhibited. The constitutive expression of natural caspase inhibitors may play a role in the resistance of these cells to apoptotic stimuli that directly target caspases, including radiochemotherapy and immune-mediated tumor cell lysis.  相似文献   

7.
Several of the inhibitor of apoptosis protein (IAP) family members regulate apoptosis in response to various cellular assaults. Some members are also involved in cell signalling, mitosis and targeting proteins to the ubiquitin-proteasome degradation machinery. The most intensively studied family member, X-linked IAP (XIAP), is a potent inhibitor of caspase activity; hence, it is generally assumed that direct caspase inhibition is an important conserved function of most members of the family. Biochemical and structural studies have precisely mapped the elements of XIAP required for caspase inhibition. Intriguingly, these elements are not conserved among IAPs. Here, we review current knowledge of the caspase-inhibitory potential of the human IAPs and show that XIAP is probably the only bona fide caspase inhibitor, suggesting that the other family members never gained the ability to directly inhibit caspase activity.  相似文献   

8.
cFLIP inhibits caspase 8 recruitment and processing at the death-inducing signaling complex (DISC), which is known to inhibits apoptosis mediated by death receptors such as Fas and death receptor 5 (DR5) as well as apoptosis mediated by anticancer therapeutic drugs. We observed that oxaliplatin induced apoptosis, the activation of DEVDase activity, DNA fragmentation, and cleavage of PLC-gamma1 and degradation of XIAP protein in dose-dependent manners, which was prevented by pretreatment with z-VAD or NAC, suggesting that oxaliplatin-induced apoptosis was mediated by caspase- or reactive oxygen species (ROS)-dependent pathways. Furthermore, ectopic expression of cFLIPs potently attenuated oxaliplatin-induced apoptosis, whereas cFLIP(L) had less effect. Interestingly, we found that the protein level of XIAP was sustained in oxaliplatin-treated cFLIPs overexpressing cell, which was caused by the increased XIAP protein stability and that the phospho-Akt level was high compared to vector-transfected cell. The increased XIAP protein stability was lessened by PI3K inhibitor LY294002 treatment in cFLIPs overexpressing cells. Thus, our findings imply that the anti-apoptotic functions of cFLIPs may be attributed to inhibit oxaliplatin-induced apoptosis through the sustained XIAP protein level and Akt activation.  相似文献   

9.
Upstream regulatory role for XIAP in receptor-mediated apoptosis   总被引:4,自引:0,他引:4       下载免费PDF全文
X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.  相似文献   

10.
Overexpression studies have identified X-linked inhibitor of apoptosis protein (XIAP) as a potent inhibitor of caspases. However, the exact function of endogenous XIAP in regulating mammalian apoptosis is less clear. Endogenous XIAP strictly regulates cytochrome c-dependent caspase activation in sympathetic neurons but not in many mitotic cells. We report that postmitotic cardiomyocytes, unlike fibroblasts, are remarkably resistant to cytosolic microinjection of cytochrome c. The cardiomyocyte resistance to cytochrome c is mediated by endogenous XIAP, as XIAP-deficient cardiomyocytes die rapidly with cytosolic cytochrome c alone. Importantly, we found that cardiomyocytes, like neurons, have markedly reduced Apaf-1 levels and that this decrease in Apaf-1 is directly linked to the tight regulation of caspase activation by XIAP. These data identify an important function of XIAP in cardiomyocytes and point to a striking similarity in the regulation of apoptosis in postmitotic cells.  相似文献   

11.
In postmitotic sympathetic neurons, unlike most mitotic cells, death by apoptosis requires not only the release of cytochrome c from the mitochondria, but also an additional step to relieve X-linked inhibitor of apoptosis protein (XIAP)'s inhibition of caspases. Here, we examined the mechanism by which XIAP is inactivated following DNA damage and found that it is achieved by a mechanism completely different from that following apoptosis by nerve growth factor (NGF) deprivation. NGF deprivation relieves XIAP by selectively degrading it, whereas DNA damage overcomes XIAP via a p53-mediated induction of Apaf-1. Unlike wild-type neurons, p53-deficient neurons fail to overcome XIAP and remain resistant to cytochrome c after DNA damage. Restoring Apaf-1 induction in p53-deficient neurons is sufficient to overcome XIAP and sensitize cells to cytochrome c. Although a role for p53 in apoptosis upstream of cytochrome c release has been well established, this study uncovers an additional, essential role for p53 in regulating caspase activation downstream of mitochondria following DNA damage in neurons.  相似文献   

12.
X-linked inhibitor of apoptosis (XIAP), known primarily for its caspase inhibitory properties, has recently been shown to interact with and regulate the levels of COMMD1, a protein associated with a form of canine copper toxicosis. Here, we describe a role for XIAP in copper metabolism. We find that XIAP levels are greatly reduced by intracellular copper accumulation in Wilson's disease and other copper toxicosis disorders and in cells cultured under high copper conditions. Elevated copper levels result in a profound, reversible conformational change in XIAP due to the direct binding of copper to XIAP, which accelerates its degradation and significantly decreases its ability to inhibit caspase-3. This results in a lowering of the apoptotic threshold, sensitizing the cell to apoptosis. These data provide an unsuspected link between copper homeostasis and the regulation of cell death through XIAP and may contribute to the pathophysiology of copper toxicosis disorders.  相似文献   

13.
In sympathetic neurons, unlike most nonneuronal cells, growth factor withdrawal-induced apoptosis requires the development of competence in addition to cytochrome c release to activate caspases. Thus, although most nonneuronal cells die rapidly with cytosolic cytochrome c alone, sympathetic neurons are remarkably resistant unless they develop competence. We have identified endogenous X-linked inhibitor of apoptosis protein (XIAP) as the essential postcytochrome c regulator of caspase activation in these neurons. In contrast to wild-type neurons that are resistant to injection of cytochrome c, XIAP-deficient neurons died rapidly with cytosolic cytochrome c alone. Surprisingly, the release of endogenous Smac was not sufficient to overcome the XIAP resistance in sympathetic neurons. In contrast, the neuronal competence pathway permitted cytochrome c to activate caspases by inducing a marked reduction in XIAP levels in these neurons. Thus, the removal of XIAP inhibition appears both necessary and sufficient for cytochrome c to activate caspases in sympathetic neurons. These data identify a critical function of endogenous XIAP in regulating apoptosis in mammalian cells.  相似文献   

14.
Mechanisms of cell death in pancreatitis remain unknown. Parenchymal necrosis is a major complication of pancreatitis; also, the severity of experimental pancreatitis correlates directly with necrosis and inversely with apoptosis. Thus, shifting death responses from necrosis to apoptosis may have a therapeutic value. To determine cell death pathways in pancreatitis and the possibility of necrosis/apoptosis switch, we utilized the differences between the rat model of cerulein pancreatitis, with relatively high apoptosis and low necrosis, and the mouse model, with little apoptosis and high necrosis. We found that caspases were greatly activated during cerulein pancreatitis in the rat but not mouse. Endogenous caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP) underwent complete degradation in the rat but remained intact in the mouse model. Furthermore, XIAP inhibition with embelin triggered caspase activation in the mouse model, implicating XIAP in caspase blockade in pancreatitis. Caspase inhibitors decreased apoptosis and markedly stimulated necrosis in the rat model, worsening pancreatitis parameters. Conversely, caspase induction with embelin stimulated apoptosis and decreased necrosis in mouse model. Thus, caspases not only mediate apoptosis but also protect from necrosis in pancreatitis. One protective mechanism is through degradation of receptor-interacting protein (RIP), a key mediator of "programmed" necrosis. We found that RIP was cleaved (i.e. inactivated) in the rat but not the mouse model. Caspase inhibition restored RIP levels; conversely, caspase induction with embelin triggered RIP cleavage. Our results indicate key roles for caspases, XIAP, and RIP in the regulation of cell death in pancreatitis. Manipulating these signals to change the pattern of death responses presents a therapeutic strategy for treatment of pancreatitis.  相似文献   

15.
Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS and PNS neurons, respectively, after nerve lesioning. We investigated the role of NO signaling on optic nerve regeneration in the goldfish ( Carassius auratus ). NADPH diaphorase staining revealed that nitric oxide synthase (NOS) activity was up-regulated primarily in the retinal ganglion cells (RGCs) 5–40 days after axotomy. Levels of neuronal NOS (nNOS) mRNA and protein also increased in the RGCs alone during this period. This period (5–40 days) overlapped with the process of axonal elongation during regeneration of the goldfish optic nerve. Therefore, we evaluated the effect of NO signaling molecules upon neurite outgrowth from adult goldfish axotomized RGCs in culture. NO donors and dibutyryl cGMP increased neurite outgrowth dose-dependently. In contrast, a nNOS inhibitor and small interfering RNA, specific for the nNOS gene, suppressed neurite outgrowth from the injured RGCs. Intra-ocular dibutyryl cGMP promoted the axonal regeneration from injured RGCs in vivo . None of these molecules had an effect on cell death/survival in this culture system. This is the first report showing that NO-cGMP signaling pathway through nNOS activation is involved in neuroregeneration in fish CNS neurons after nerve lesioning.  相似文献   

16.
One obstacle in de novo protein design is the vast sequence space that needs to be searched through to obtain functional proteins. We developed a new method using structural profiles created from evolutionarily related proteins to constrain the simulation search process, with functions specified by atomic-level ligand–protein binding interactions. The approach was applied to redesigning the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP), whose primary function is to suppress the cell death by inhibiting caspase-9 activity; however, the function of the wild-type XIAP can be eliminated by the binding of Smac peptides. Isothermal calorimetry and luminescence assay reveal that the designed XIAP domains can bind strongly with the Smac peptides but do not significantly inhibit the caspase-9 proteolytic activity in vitro compared with the wild-type XIAP protein. Detailed mutation assay experiments suggest that the binding specificity in the designs is essentially determined by the interplay of structural profile and physical interactions, which demonstrates the potential to modify apoptosis pathways through computational design.  相似文献   

17.
Hepatocyte growth factor (HGF) is known to promote the survival and foster neuritic outgrowth of different subpopulations of CNS neurons during development. Together with its corresponding receptor c-mesenchymal-epithelial transition factor (Met), it is expressed in the developing and the adult murine, rat and human CNS. We have studied the role of HGF in paradigms of retinal ganglion cell (RGC) regeneration and cell death in vitro and in vivo. After application of recombinant HGF in vitro, survival of serum-deprived RGC-5 cells and of growth factor-deprived primary RGC was significantly increased. This was shown to be correlated to the phosphorylation of c-Met and subsequent activation of serine/threonine protein kinase Akt and MAPK downstream signalling pathways involved in neuronal survival. Furthermore, neurite outgrowth of primary RGC was stimulated by HGF. In vivo, c-Met expression in RGC was up-regulated after optic nerve axotomy lesion. Here, treatment with HGF significantly improved survival of axotomized RGC and enhanced axonal regeneration after optic nerve crush. Our data demonstrates that exogenously applied HGF has a neuroprotective and regeneration-promoting function for lesioned CNS neurons. We provide strong evidence that HGF may represent a trophic factor for adult CNS neurons, which may play a role as therapeutic target in the treatment of neurotraumatic and neurodegenerative CNS disorders.  相似文献   

18.
Neurological deficits caused by H-I (hypoxia-ischaemia) to the perinatal brain are often severely debilitating and lead to motor impairment, intellectual disability and seizures. Perinatal brain injury is distinct from adult brain injury in that the developing brain is undergoing the normal process of neuronal elimination by apoptotic cell death and thus the apoptotic machinery is more easily engaged and activated in response to injury. Thus cell death in response to neonatal H-I brain injury is partially due to mitochondrial dysfunction and activation of the apoptosome and caspase 3. An important regulator of the apoptotic response following mitochondrial dysfunction is XIAP (X-linked inhibitor of apoptosis protein). XIAP inhibits apoptosis at the level of caspase 9 and caspase 3 activation, and lack of XIAP in vitro has been shown to lead to increased apoptotic cell death. In the present study we show that mice lacking the gene encoding the XIAP protein have an exacerbated response to neonatal H-I injury as measured by tissue loss at 7 days following the injury. In addition, when the XIAP-deficient mice were studied at 24 h post-H-I we found that the increase in injury correlates with an increased apoptotic response in the XIAP-deficient mice and also with brain imaging changes in T2-weighted magnetic resonance imaging and apparent diffusion coefficient that correspond to the location of apoptotic cell death. These results identify a critical role of XIAP in regulating neuronal apoptosis in vivo and demonstrate the enhanced vulnerability of neurons to injury in the absence of XIAP in the developing brain.  相似文献   

19.
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death may occur from necrosis but is more commonly associated with apoptosis. During the process of programmed cell death or apoptosis, caspases become activated and cause a cascade of events that eventually destroy the cell. XIAP is the most potent caspase inhibitor encoded in the mammalian genome. The effectiveness of XIAP and its deletion mutants was examined in two cell lines commonly utilized in commercial bioreactors: Chinese hamster ovary (CHO) and 293 human embryonic kidney (293 HEK) cells. CHO cells undergo apoptosis as a result of various insults, including Sindbis virus infection and serum deprivation. In this study, we demonstrate that 293 HEK cells undergo apoptosis during Sindbis virus infection and exposure to the toxins, etoposide and cisplatin. Two deletion mutants of XIAP were created; one containing three tandem baculovirus iap repeat (BIR) domains and the other containing only the C-terminal RING domain, lacking the BIRs. Viability studies were performed for cells expressing each mutant and the wild-type protein on transiently transfected cells, as stable pools, or as stable clonal cell populations after induction of apoptosis by serum deprivation, Sindbis virus infection, etoposide, and cisplatin treatment. Expression of the wild-type XIAP inhibited apoptosis significantly; however, the XIAP mutant containing the three BIRs provided equivalent or improved levels of apoptosis inhibition in all cases. Expression of the RING domain offered no protection and was pro-apoptotic in transient expression experiments. With the aid of an N-terminal YFP fusion to each protein, distribution within the cell was visualized, and the wild-type and mutants showed differing intracellular accumulation patterns. While the wild-type XIAP protein accumulated primarily in aggregates in the cytosol, the RING mutant was enriched in the nucleus. In contrast, the deletion mutant containing the three BIRs was distributed evenly throughout the cytosol. Thus, protein engineering of the XIAP protein can be used to alter the intracellular distribution pattern and improve the ability of this caspase inhibitor to protect against apoptosis for two mammalian cell lines.  相似文献   

20.
X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases 3, 7 and 9, and mitochondrial Smac (second mitochondria-derived activator of caspase) release during apoptosis inhibits the activity of XIAP. In this study we show that cytosolic XIAP also feeds back to mitochondria to impair Smac release. We constructed a fluorescent XIAP-fusion protein by labelling NH2- and COOH-termini with Cerulean fluorescent protein (C-XIAP-C). Immunoprecipitation confirmed that C-XIAP-C retained the ability to interact with Smac and impaired extrinsically and intrinsically activated apoptosis in response to tumour necrosis factor-related apoptosis-inducing ligand/cycloheximide and staurosporine. In C-XIAP-C-expressing cells, cytochrome c release from mitochondria proceeded normally, whereas Smac release was significantly prolonged and incomplete. In addition, physiological expression of native XIAP prolonged or limited Smac release in HCT-116 colon cancer cells and primary mouse cortical neurons. The Smac-binding capacity of XIAP, but not caspase inhibition, was central for mitochondrial Smac retention, as evidenced in experiments using XIAP mutants that cannot bind to Smac or effector caspases. Similarly, the release of a Smac mutant that cannot bind to XIAP was not impaired by C-XIAP-C expression. Full Smac release could however be provoked by rapid cytosolic C-XIAP-C depletion upon digitonin-induced plasma membrane permeabilization. Our findings suggest that although mitochondria may already contain pores sufficient for cytochrome c release, elevated amounts of XIAP can selectively impair and limit the release of Smac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号