首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel one-step chemical method has been developed for the introduction of biotin into nucleic acids for non-isotopic hybridization. The method is based on the interaction of biotin hydrazide with unpaired cytosine residues. The interaction is catalyzed by sodium bisulfite with an optimum at a buffered pH of about 4.5. The reaction reached its maximum after 24 h incubation at a biotin hydrazide concentration of 10 mg/ml. Using streptavidin-alkaline phosphatase conjugates, the limits for detecting the biotinylated probe, either adsorbed directly to nitrocellulose or hybridized to filter-bound target DNA, were 0.3 and 0.9 pg, respectively. The salience of the approach described here over previously used biotin derivatives is that it is quick (one-step), simple and does not involve any enzymatic or instrument-mediated step to introduce the reporter moiety. In addition, other low- and high-molecular-weight hydrazides (e.g. fluorescent or enzyme hydrazides) can serve as the reporter group. The same procedure may be employed for the single-step biotinylation of free cytidine.  相似文献   

3.
Progress in biosensors has mainly been made by the improvement of the biological components and the implementation of microsystem technologies. Enzymes are still the most appropriate recognition elements because they combine high chemical specificity and inherent biocatalytic signal amplification. A breakthrough has been achieved in the application of membrane-integrated receptor systems for analyte recognition and signal transduction in biosensors. Sensor integration of RNA aptamers has been initiated, and the performance of fully synthetic molecularly imprinted polymers has been improved.  相似文献   

4.
Mammalian brain development commences during foeto-placental development and is strongly influenced by the epigenetic regulation of imprinted genes. The foetal placenta exerts considerable influence over the functioning of the adult maternal hypothalamus, and this occurs at the same time as the foetus itself is developing a hypothalamus. Thus, the action and interaction of two genomes in one individual, the mother, has provided a template for co-adaptive functions across generations that are important for maternal care and resource transfer, while co-adaptively shaping the mothering capabilities of each subsequent generation. The neocortex is complex, enabling behavioural diversity and cultural learning such that human individuals are behaviourally unique. Retrotransposons may, in part, be epigenetic mediators of such brain diversity. Interestingly some imprinted genes are themselves retrotransposon-derived, and retrotransposon silencing by DNA methylation is thought to have contributed to the evolutionary origins of imprint control regions. The neocortex has evolved to be adaptable and sustain both short-term and long-term synaptic connections that underpin learning and memory. The adapted changes are not themselves inherited, but the predisposing mechanisms for such epigenetic changes are heritable. This provides each generation with the same ability to make new adaptations while constrained by a transgenerational knowledge-based predisposition to preserve others.  相似文献   

5.
The construction and performance of bienzyme amperometric composite biosensors for the selective determination of l- or d-amino acids is reported. D- or L-Amino acid oxidase, horseradish peroxidase, and the mediator ferrocene were coimmobilized by simple physical inclusion into the bulk of a graphite-70% Teflon electrode matrix. Working conditions including amino acid oxidase loading and pH were optimized. Studies on the repeatability of the amperometric response obtained at +0.00 V, with and without regeneration of the electrode surface by polishing, on the useful lifetime of one single biosensor and on the reproducibility in the fabrication of different biosensors illustrate the robustness of the bioelectrodes design. Calibration plots by both amperometry in stirred solutions and flow injection with amperometric detection were obtained for L-arginine, L-phenylalanine, L-leucine, L-methionine, L-tryptophan, D-leucine, D-methionine, D-serine, and D-valine. Differences in sensitivity were discussed in terms of the hydrophobicity of the substrate and of the electrode surface. The bienzyme composite electrode was applied to the determination of L- and D-amino acids in racemic samples, as well as to the estimation of the L-amino acids content in muscatel grapes.  相似文献   

6.
Glucose sensing is used as a model to explore the advantages and problems deriving from the use of either enzymes or sugar binding proteins to develop stable fluorescence biosensors. We report on a novel approach to address the problem of substrate consumption by sensors based on enzymes, namely the utilization of apo-enzymes as non-active forms of the protein which are still able to bind the substrate/ligand. We also review studies in which derivatization of a naturally thermostable sugar-binding protein with a fluorescent probe allows quantitative monitoring of glucose binding even after immobilization on a solid support.  相似文献   

7.
This article gives an overview of the electrochemical biosensors that incorporate genetically modified enzymes. Firstly, the improvements on the sensitivity and selectivity of biosensors that integrate mutated enzymes are summarised. Next, new trends focused on the oriented immobilisation of mutated enzymes through specific functional groups located at their surface are reviewed. Finally, the effect of enzyme mutations on the electron transfer distance and kinetics of electrochemical biosensors is described.  相似文献   

8.
Nanosheet-based ZnO microsphere with porous nanostructures was synthesized by a facile chemical bath deposition method followed by thermal treatment, which was explored for the construction of electrochemical biosensors. Spectroscopic and electrochemical researches revealed the ZnO-based composite was a biocompatible immobilization matrix for enzymes with good enzymatic stability and bioactivity. With advantages of nanostructured inorganic-organic hybrid materials, a pair of stable and well-defined quasi-reversible redox peaks of hemoglobin was obtained with a formal potential of -0.345V (vs. Ag/AgCl) in pH 7.0 buffer. Facilitated direct electron transfer of the metalloenzymes with an apparent heterogeneous electron transfer rate constant (k(s)) of 3.2s(-1) was achieved on the ZnO-based enzyme electrode. Comparative studies demonstrated the nanosheet-based ZnO microspheres were more effective in facilitating the electron transfer of immobilized enzyme than solid ZnO microspheres, which may result from the unique nanostructures and larger surface area of the porous ZnO. The prepared biosensor displayed good performance for the detection of H(2)O(2) and NaNO(2) with a wide linear range of 1-410 and 10-2700muM, respectively. The entrapped hemoglobin exhibits high peroxidase-like activity for the catalytic reduction of H(2)O(2) with an apparent Michaelis-Menten constant (K(M)(app)) of 143muM. The nanosheet-based ZnO could be a promising matrix for the fabrication of direct electrochemical biosensors, and may find wide potential applications in biomedical detection and environmental analysis.  相似文献   

9.
A comparison of the behaviour of three different rigid composite matrices for the construction of amperometric tyrosinase biosensors, which are widely used for the detection of phenolic compounds, is reported. The composite electrode matrices were, graphite-Teflon; reticulated vitreous carbon (RVC)-epoxy resin; and graphite-ethylene/propylene/diene (EPD) terpolymer. After optimization of the experimental conditions, different aspects regarding the stability of the three composite tyrosinase electrode designs were considered and compared. A better reproducibility of the amperometric responses was found with the graphite-EPD electrodes, whereas a longer useful lifetime was observed for the graphite-Teflon electrodes. The kinetic parameters of the tyrosinase reaction were calculated for eight different phenolic compounds, as well as their corresponding calibration plots. The general trend in sensitivity was graphite-EPD>graphite-Teflon>RVC-epoxy resin. A correlation between sensitivity and the catalytic efficiency of the enzyme reaction for each phenolic substrate was found. Furthermore, differences in the sensitivity order for the phenolic compounds were observed among the three biocomposite electrodes, which suggests that the nature of the electrode matrix influences the interactions in the tyrosinase catalytic cycle.  相似文献   

10.
11.
纳米粒子标记DNA探针在电化学DNA生物传感器中的应用   总被引:3,自引:0,他引:3  
高梅 《生物磁学》2006,6(1):16-19
介绍了纳米电化学DNA生物传感器的基本概念和分类,并介绍了用于DNA标记的纳米粒子的六种类型及其三大检测方法,在此基础上对纳米电化学DNA生物传感器在基因检测、疾病诊断、DNA检测等方面的最新进展进行了综述与讨论.  相似文献   

12.
介绍了纳米电化学DNA生物传感器的基本概念和分类,并介绍了用于DNA标记的纳米粒子的六种类型及其三大检测方法,在此基础上对纳米电化学DNA生物传感器在基因检测、疾病诊断、DNA检测等方面的最新进展进行了综述与讨论。  相似文献   

13.
《Biosensors》1986,2(1):15-33
After having considered the general definition of biosensors, the specifications of one type are discussed here in more detail, namely the pH-sensitive ISFET, which is at present being clinically investigated for intravascular blood pH recording. Results, advantages and possible improvements will be discussed, as well as a prediction with respect to future developments of FET-based biosensors.  相似文献   

14.
15.
氨基酸是蛋白质的基本组成单元,对人和动物的营养健康十分重要,广泛应用于饲料、食品、医药和日化等领域。目前,氨基酸主要通过微生物发酵可再生原料生产,氨基酸产业是我国生物制造的重要支柱产业之一。氨基酸菌株主要通过随机诱变和代谢工程改造结合筛选获得。菌株生产水平进一步提高的核心限制之一是缺乏高效、快速和准确的筛选方法,因此,发展氨基酸菌株的高通量筛选方法对关键功能元件挖掘及高产菌株的创制筛选至关重要。本文综述了氨基酸生物传感器的设计,及其在功能元件、高产菌株的高通量进化筛选和代谢途径动态调控中的应用研究进展,讨论了现有氨基酸生物传感器存在的问题和性能提升改造策略,并展望了开发氨基酸衍生物生物传感器的重要性。  相似文献   

16.
To achieve a high efficiency of analyte capture by a capture antibody attached to an electrochemical immunosensor, we have immobilised an analyte-specific antibody on a self-assembled layer of recombinant Protein G that was thiolated with succinimidyl-6-[3'-(2-pyridyldithio)-propionamido] hexanoate (LC-SPDP). Then two techniques were employed for conjugating a second antigen-specific antibody to alkaline phosphatase (mAb2-AP) using either LC-SPDP or the biotin-streptavidin interaction as the mode of cross-linking the antibody and enzyme. After characterising the two mAb2-AP preparations (mAb2-(LC-SPDP)-AP and mAb2-(Biotin-SA)-AP), they were each used as the signal antibody for immunosensors formatted for two-site immunoassays where the capture antibody was attached to a Protein G-(LC-SPDP) scaffold on gold electrodes. The antibodies and assays were specific for the clinically important hormone, human chorionic gonadotrophin (hCG). Protein G-(LC-SPDP) provided a stable scaffold, while mAb2-(LC-SPDP)-AP and mAb2-(Biotin-SA)-AP performed well as the signal antibodies. Immunosensors with mAb2-(Biotin-SA)-AP were characterised by a limit of detection of 216 I UL(-1) for hCG and a linear response up to approximately 2000 I UL(-1). Conversely, immunosensors with mAb2-(LC-SPDP)-AP exhibited a limit of detection of 240 I UL(-1) and a linear response up to 4000 I UL(-1).  相似文献   

17.
Lactobacillus plantarum requires biotin for growth. We show that in the presence of high levels of the biotin biosynthetic precursor, dethiobiotin, L. plantarum synthesizes biotin and grows in medium with dethiobiotin but without biotin. Lactobacillus casei also grew under similar conditions.  相似文献   

18.
A Picciocchi  R Douce  C Alban 《Plant physiology》2001,127(3):1224-1233
Biotin synthase, encoded by the bio2 gene in Arabidopsis, catalyzes the final step in the biotin biosynthetic pathway. The development of radiochemical and biological detection methods allowed the first detection and accurate quantification of a plant biotin synthase activity, using protein extracts from bacteria overexpressing the Arabidopsis Bio2 protein. Under optimized conditions, the turnover number of the reaction was >2 h(-1) with this in vitro system. Purified Bio2 protein was not efficient by itself in supporting biotin synthesis. However, heterologous interactions between the plant Bio2 protein and bacterial accessory proteins yielded a functional biotin synthase complex. Biotin synthase in this heterologous system obeyed Michaelis-Menten kinetics with respect to dethiobiotin (K(m) = 30 microM) and exhibited a kinetic cooperativity with respect to S-adenosyl-methionine (Hill coefficient = 1.9; K(0.5) = 39 microM), an obligatory cofactor of the reaction. In vitro inhibition of biotin synthase activity by acidomycin, a structural analog of biotin, showed that biotin synthase reaction was the specific target of this inhibitor of biotin synthesis. It is important that combination experiments using purified Bio2 protein and extracts from pea (Pisum sativum) leaf or potato (Solanum tuberosum) organelles showed that only mitochondrial fractions could elicit biotin formation in the plant-reconstituted system. Our data demonstrated that one or more unidentified factors from mitochondrial matrix (pea and potato) and from mitochondrial membranes (pea), in addition to the Bio2 protein, are obligatory for the conversion of dethiobiotin to biotin, highlighting the importance of mitochondria in plant biotin synthesis.  相似文献   

19.
Changes in the isonicotinic acid hydrazide (INH) concentration in rat blood and brain were studied in correlation to postnatal development in groups of animals aged 21 and 42 days and 3 months. In the first part of the experiments, INH was administered intravenously to all the age groups in a dose of 100 mg/kg. In the second part, the dose was related to extracellular fluid volume, so that the 3-week-old rats were given 154 mg/kg, the 6-week-old animals 129 mg/kg and the 3-month-old animals 100 mg/kg. After a dose of 100 mg/kg, INH levels in the blood of 21-day-old rats were significantly lower than in 42-day-old and adult animals. The brain INH levels did not differ significantly. On relating the dose to the amount of extracellular fluid, there were no significant differences in the blood INH levels, but the levels in the brain of 21- and 42-day-old rats were significantly higher than in 3-month-old animals. Blood volume related to body weight and brain weight did not differ in the various age groups. The authors conclude that the blood-brain barrier for isonicotinic acid hydrazide alters in rats during postnatal development. In young animals (21- and 42-day-old), more INH infiltrates into the CNS than in adult animals.  相似文献   

20.
Biosensors with the composition of carbon/Prussian blue/(glucose oxidase+glutaraldehyde+polytyramine) were constructed. Before tyramine monomers were electropolymerized, glucose oxidase and tyramine monomers were cross-linked with glutaraldehyde onto the surface of Prussian-blue-modified electrodes. The constructed biosensors produced highly reproducible and stable devices. The biosensors exhibited neglectable decrease in current response after 10 repeated uses or after 1 month of dry storage. The resultant biosensors had a linear range of 0.1-1 mM glucose and a detection limit of 0.05 mM. Since the following electrocatalytic process proceeds at a low electrode potential (ca. -0.3 V vs Ag/AgCl), ascorbate and uric acid do not produce observable interfering signal for the determination of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号