首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.  相似文献   

2.
Glypican-1 is a member of a family of glycosylphosphatidylinositol anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentiation. The 165-amino acid form of vascular endothelial growth factor (VEGF165) is a mitogen for endothelial cells and a potent angiogenic factor in vivo. Heparin binds to VEGF165 and enhances its binding to VEGF receptors. However, native HSPGs that bind VEGF165 and modulate its receptor binding have not been identified. Among the glypicans, glypican-1 is the only member that is expressed in the vascular system. We have therefore examined whether glypican-1 can interact with VEGF165. Glypican-1 from rat myoblasts binds specifically to VEGF165 but not to VEGF121. The binding has an apparent dissociation constant of 3 x 10(-10) M. The binding of glypican-1 to VEGF165 is mediated by the heparan sulfate chains of glypican-1, because heparinase treatment abolishes this interaction. Only an excess of heparin or heparan sulfates but not other types of glycosaminoglycans inhibited this interaction. VEGF165 interacts specifically not only with rat myoblast glypican-1 but also with human endothelial cell-derived glypican-1. The binding of 125I-VEGF165 to heparinase-treated human vascular endothelial cells is reduced following heparinase treatment, and addition of glypican-1 restores the binding. Glypican-1 also potentiates the binding of 125I-VEGF165 to a soluble extracellular domain of the VEGF receptor KDR/flk-1. Furthermore, we show that glypican-1 acts as an extracellular chaperone that can restore the receptor binding ability of VEGF165, which has been damaged by oxidation. Taken together, these results suggest that glypican-1 may play an important role in the control of angiogenesis by regulating the activity of VEGF165, a regulation that may be critical under conditions such as wound repair, in which oxidizing agents that can impair the activity of VEGF are produced, and in situations were the concentrations of active VEGF are limiting.  相似文献   

3.
Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 play important roles in mitogenesis and chemotaxis of endothelial cells. In normal human skin, VEGF is expressed and secreted by epidermal keratinocytes. Emerging data suggest that keratinocyte-derived VEGF targets other cell types besides the dermal endothelial cells. We have recently showed that keratinocytes from human normal skin expressed all five known VEGF receptors and co-receptors (neuropilin 1 and 2). To define the functional significance of VEGFR-2 in epidermis, we examined its role in a keratinocyte cell line, HaCaT cells, in response to VEGF treatment. Expression of VEGFR-2 on HaCaT cells was confirmed at both RNA and protein levels and was regulated by VEGF165 treatment. Treatment of HaCaT cells with VEGF165 induced tyrosine-autophosphorylation of VEGFR-2 and phosphorylation of PLC-gamma and p44/42 MAPK in a time-dependent manner. Preincubation with a neutralizing antibody for VEGFR-2 (MAB3571) completely abrogated these phosphorylation effects. Furthermore, VEGF165 stimulated proliferation and migration of HaCaT cells, and this effect was significantly blocked by a pretreatment with MAB3571. Neutralizing VEGFR-2 in HaCaT cells increased cell adhesion during culture. Our results suggest that VEGFR-2 expressed on HaCaT cells plays a crucial role in VEGF-mediated regulation of cell activity.  相似文献   

4.
Neuropilin-1 (NRP-1) is a co-receptor for vascular endothelial growth factor (VEGF). During neovascularization, vascular smooth muscle cells (VSMCs) and pericytes modulate the function of endothelial cells. Factors that mediate NRP-1 in human VSMCs (hVSMCs) remain to be elucidated. We studied various angiogenic cytokines to identify factors that increase NRP-1 expression in hVSMCs. Treatment of hVSMCs with basic fibroblast growth factor (b-FGF) induced expressions of NRP-1 mRNA and protein whereas epidermal growth factor, insulin-like growth factor-1, and interleukin-1beta did not. b-FGF induced phosphorylation of Erk-1/2 and JNK. MEK1/2 and nuclear factor kappa B (NF-kappaB) inhibitors (U0126 and TLCK, respectively) blocked the ability of b-FGF to induce NRP-1 mRNA expression, but inhibition of JNK (SP600125) or PI3-kinase activity (wortmannin) did not. Further, the increase in NRP-1 expression by b-FGF enhanced hVSMCs migration in response to VEGF(165). This effect was dependent on the binding of VEGF(165) to VEGFR-2, as blocking antibodies to VEGFR-2, but not VEGFR-1, inhibited VEGF(165)-induced migration. In conclusion, b-FGF increased NRP-1 expression in hVSMCs that in turn enhance the effect of VEGF(165) on cell migration. The enhanced migration of hVSMCs was mediated through binding of VEGF(165) to both NRP-1 and VEGFR-2, as inhibition of VEGFR-2 on these cells blocked the effect of VEGF-mediated cell migration.  相似文献   

5.
Vascular endothelial growth factor (VEGF)/vascular permeability factor induces both angiogenesis and vascular permeability mainly through VEGF receptor (VEGFR)-2 activation. VEGF binds VEGFR-1 as well, but the importance of VEGFR-1 signaling in vascular permeability has been largely neglected. Here, we report the purification and characterization of a novel VEGF-like protein from Trimeresurus flavoviridis Habu snake venom. The Habu snake has a venom-specific VEGF-like molecule, T. flavoviridis snake venom VEGF (TfsvVEGF), in addition to VEGF-A. TfsvVEGF has almost 10-fold less mitotic activity than VEGF(165), a predominant isoform of human VEGF-A, but a similar effect on vascular permeability. TfsvVEGF bound VEGFR-1 and induced its autophosphorylation to almost the same extent as VEGF(165), but bound VEGFR-2 weakly and induced its autophosphorylation almost 10-fold less effectively than VEGF(165). This unique binding affinity for VEGFR-1 and VEGFR-2 leads to the vascular permeability-dominant activity of TfsvVEGF. These results suggest that Habu snakes have acquired a highly purposive molecule for a toxin, which enhances the toxicity in envenomation without inducing effective angiogenesis and the following regeneration of damaged tissues, taking advantage of the difference in signaling properties involving VEGFR-1 and VEGFR-2 between vascular permeability and angiogenesis. TfsvVEGF is thus a potent inducing factor selective for vascular permeability through preferential signaling via VEGFR-1. These data strongly indicate the importance of VEGFR-1 signaling in vascular permeability.  相似文献   

6.
Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR-family proteins consist of VEGFR-1/Flt-1, VEGFR-2/KDR/Flk-1, and VEGFR-3/Flt-4. Among these, VEGFR-2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1-3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR-specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR-2 tyrosine kinase, ZM323881 (5-[[7-(benzyloxy) quinazolin-4-yl]amino]-4-fluoro-2-methylphenol), to explore the role of VEGFR-2 in endothelial cell function. Consistent with its reported effects on VEGFR-2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR-2, but not of VEGFR-1, epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR-1 and VEGFR-2, but not VEGFR-3, in the absence or presence of ZM323881. Inhibition of VEGFR-2 blocked activation of extracellular regulated-kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR-1-specific ligand, placental growth factor (PIGF). Inhibition of VEGFR-2 also perturbed VEGF-induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor-2 inhibition also reversed VEGF-stimulated phosphorylation of CrkII and its Src homology 2 (SH2)-binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR-2 thus blocked all VEGF-induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR-2 is critical for VEGF signaling and/or that VEGFR-2 may function in a heterodimer with VEGFR-1 in human vascular endothelial cells.  相似文献   

7.
Vascular endothelial growth factor (VEGF) directly stimulates endothelial cell proliferation and migration via tyrosine kinase receptors of the split kinase domain family. It mediates vascular growth and angiogenesis in the embryo but also in the adult in a variety of physiological and pathological conditions. The potential binding site of VEGF with its receptor was identified using cellulose-bound overlapping peptides of the extracytosolic part of the human vascular endothelial growth factor receptor II (VEGFR II). Thus, a peptide originating from the third globular domain of the VEGFR II comprising residues 247RTELNVGIDFNWEYP261 was revealed as contiguous sequence stretch, which bound 125I-VEGF165. A systematic replacement with L-amino acids within the peptide representing the putative VEGF-binding site on VEGFR II indicates Asp255 as the hydrophilic key residue for binding. The dimerized peptide (RTELNVGIDFNWEYPAS)2K inhibits VEGF165 binding with an IC50 of 0.5 microM on extracellular VEGFR II fragments and 30 microM on human umbilical vein cells. VEGF165-stimulated autophosphorylation of VEGFR II as well as proliferation and migration of microvascular endothelial cells was inhibited by the monomeric peptide RTELNVGIDFNWEYPASK at a half-maximal concentration of 3-10, 0.1, and 0.1 microM, respectively. We conclude that transduction of the VEGF165 signal can be interrupted with a peptide derived from the third Ig-like domain of VEGFR II by blockade of VEGF165 binding to its receptor.  相似文献   

8.
We previously reported that vascular endothelial growth factor (VEGF)-A(165) inflammatory effect is mediated by acute platelet-activating factor synthesis from endothelial cells upon the activation of VEGF receptor-2 (VEGFR-2) and its coreceptor, neuropilin-1 (NRP-1). In addition, VEGF-A(165) promotes the release of other endothelial mediators including nitric oxide and prostacyclin (PGI(2)). However, it is unknown whether VEGF-A(165) is mediating PGI(2) synthesis through VEGF receptor-1 (VEGFR-1) and/or VEGF receptor-2 (VEGFR-2) activation and whether the coreceptor NRP-1 potentiates VEGF-A(165) activity. In this study, PGI(2) synthesis in bovine aortic endothelial cells (BAEC) was assessed by quantifying its stable metabolite (6-keto prostaglandin F(1alpha), 6-keto PGF(1alpha)) by enzyme-linked immunosorbent assay. Treatment of BAEC with VEGF analogs, VEGF-A(165) (VEGFR-1, VEGFR-2 and NRP-1 agonist) and VEGF-A(121) (VEGFR-1 and VEGFR-2 agonist) (up to 10(-9) m), increased PGI(2) synthesis by 70- and 40-fold within 15 min. Treatment with VEGFR-1 (placental growth factor and VEGF-B) or VEGFR-2 (VEGF-C) agonist did not increase PGI(2) synthesis. The combination of VEGFR-1 and VEGFR-2 agonists did not increase PGI(2) release. Pretreatment with a VEGFR-2 inhibitor abrogated PGI(2) release mediated by VEGF-A(165) and VEGF-A(121), and pretreatment of BAEC with antisense oligomers targeting VEGFR-1 or VEGFR-2 mRNA reduced PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121) up to 79%. In summary, our data demonstrate that the activation of VEGFR-1 and VEGFR-2 heterodimer (VEGFR-1/R-2) is essential for PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121), which cannot be reproduced by the parallel activation of VEGFR-1 and VEGFR-2 homodimers with corresponding agonists. In addition, the binding of VEGF-A(165) to NRP-1 potentiates its capacity to promote PGI(2) synthesis.  相似文献   

9.
Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF121, VEGF165, VEGF189, and VEGF206), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF165 elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF165 resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.  相似文献   

10.
We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF165-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF165 promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF165. These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF165 in megakaryocytic cells.  相似文献   

11.
During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine artery endothelial cells) from NP (non-pregnant) and P (pregnant) sheep, VEGF(165) activates eNOS at a greater level in P- compared with NP-UAEC, independently of Akt activation. The selective VEGFR-1 agonist PlGF (placental growth factor)-1 elicits only a modest activation of eNOS in P-UAECs compared with VEGF(165), whereas the VEGFR-2 kinase inhibitor blocks VEGF(165)-stimulated eNOS activation, suggesting VEGF(165) predominantly activates eNOS via VEGFR-2. Although VEGF(165) also activates ERK (extracellular-signal-regulated kinase)-1/2, this is not necessary for eNOS activation since U0126 blocks ERK-1/2 phosphorylation, but not eNOS activation, and the VEGFR-2 kinase inhibitor inhibits eNOS activation, but not ERK-1/2 phosphorylation. Furthermore, the inability of PlGF to activate ERK-1/2 and the ability of the VEGFR-2 selective agonist VEGF-E to activate ERK-1/2 and eNOS suggests again that both eNOS and ERK-1/2 activation occur predominantly via VEGFR-2. The lack of VEGF(165)-stimulated Akt phosphorylation is consistent with a lack of robust phosphorylation of Ser(1179)-eNOS. Although VEGF(165)-stimulated eNOS phosphorylation is observed at Ser(617) and Ser(635), pregnancy does not significantly alter this response. Our finding that VEGF(165) activation of eNOS is completely inhibited by wortmannin but not LY294002 implies a downstream kinase, possibly a wortmannin-selective PI3K (phosphoinositide 3-kinase), is acting between the VEGFR-2 and eNOS independently of Akt.  相似文献   

12.
The two most abundant secreted isoforms of vascular endothelial growth factor A (VEGF(165) and VEGF(121)) are formed as a result of differential splicing of the VEGF-A gene. VEGF(165) and VEGF(121) share similar affinities at the isolated VEGF receptor (VEGFR)-2 but have been previously demonstrated to have differential ability to activate VEGFR-2-mediated effects on endothelial cells. Herein we investigate whether the recently described VEGF(165) isoform-specific receptor neuropilin-1 (Npn-1) is responsible for the difference in potency observed for these ligands. We demonstrate that although VEGFR-2 and Npn-1 form a complex, this complex does not result in an increase in VEGF(165) binding affinity. Therefore, the differential activity of VEGF(165) and VEGF(121) cannot be explained by a differential binding affinity for the complex. Using an antagonist that competes for VEGF(165) binding at the VEGFR-2.Npn-1 complex, we observe specific antagonism of VEGF(165)-meditated phosphorylation of VEGFR-2 without affecting the VEGF(121) response. These data indicate that the formation of the complex is responsible for the increased potency of VEGF(165) versus VEGF(121). Taken together, these data suggest a receptor-clustering role for Npn-1, as opposed to Npn-1 behaving as an affinity-converting subunit.  相似文献   

13.
The splice forms of vascular endothelial growth factor (VEGF) differ in biological properties such as the receptor types that they recognize and their interaction with heparan sulfate proteoglycans. We have identified a new VEGF mRNA splice form encoding a VEGF species containing 162 amino acids (VEGF(162)) in human A431 ovarian carcinoma cells. This novel mRNA contains the peptides encoded by exons 1-5, 6A, 6B, and 8 of the VEGF gene. Recombinant VEGF(162) is biologically active. It induces proliferation of endothelial cells in vitro and angiogenesis in vivo as determined by the alginate bead assay. VEGF(162) binds less efficiently than VEGF(145) but more efficiently than VEGF(165) to a natural basement membrane produced by corneal endothelial cells. VEGF(138), an artificial VEGF form that contains exon 6B but lacks exons 6A and 7, did not bind to this basement membrane at all, indicating that exon 6B probably interferes with the interaction of exon 6A with heparin and heparan sulfate proteoglycans.  相似文献   

14.
15.
The products of the neuropilin-1 (Np-1) and neuropilin-2 (Np-2) genes are receptors for factors belonging to the class 3 semaphorin family and participate in the guidance of growing axons to their targets. In the presence of heparin-like molecules, both receptors also function as receptors for the heparin-binding 165-amino acid isoform of vascular endothelial growth factor (VEGF(165)). Both receptors are unable to bind to the 121-amino acid isoform of vascular endothelial growth factor (VEGF(121)), which lacks a heparin-binding domain. Interestingly, complexes corresponding in size to (125)I-VEGF(121).neuropilin complexes are formed when (125)I-VEGF(121) is bound and cross-linked to porcine aortic endothelial cells co-expressing VEGFR-1 and either Np-1 or Np-2. These complexes do not seem to represent complexes of (125)I-VEGF(121) with a truncated form of VEGFR-1, presumably formed as a result of the presence of Np-1 or Np-2 in the cells, because such truncated forms could not be detected with anti-VEGFR-1 antibodies. Antibodies directed against VEGFR-1 co-immunoprecipitated the (125)I-VEGF(121).Np-2 sized cross-linked complex along with (125)I-VEGF(121).VEGFR-1 complexes from cells expressing both VEGFR-1 and Np-2 but not from control cells, indicating that VEGFR-1 and Np-2 associate with each other. To perform the reciprocal experiment we have expressed in porcine aortic endothelial cells a Np-2 receptor containing an in-frame myc epitope at the C terminus. Surprisingly, the myc-tagged Np-2 receptor lost most of its VEGF(165) binding capacity but not its semaphorin-3F binding ability. Nevertheless, when Np-2myc was co-expressed in cells with VEGFR-1, it partially regained its VEGF(165) binding ability. Antibodies directed against the myc epitope co-immunoprecipitated (125)I-VEGF(165).Np-2myc and (125)I- VEGF(165).VEGFR-1 complexes from cells co-expressing VEGFR-1 and Np-2myc, indicating again that VEGFR-1 associates with Np-2. Our experiments therefore indicate that Np-2, and possibly also Np-1, associate with VEGFR-1 and that such complexes may be part of a cell membrane-associated signaling complex.  相似文献   

16.
The vascular endothelial growth factor (VEGF) family encompasses four polypeptides that result from alternative splicing of mRNA. We have previously demonstrated differences in the secretion pattern of these polypeptides. Stable cell lines expressing VEGFs were established in human embryonic kidney CEN4 cells. VEGF121, the shortest form, was secreted and freely soluble in tissue culture medium. VEGF189 was secreted, but was almost entirely bound to the cell surface or extracellular matrix. VEGF165 displayed an intermediary behavior. Suramin induced the release of VEGF189, permitting its characterization as a more basic protein with higher affinity for heparin than VEGF165 or VEGF121, but with similar endothelial cell mitogenic activity. Heparin, heparan sulfate, and heparinase all induced the release of VEGF165 and VEGF189, suggesting heparin-containing proteoglycans as candidate VEGF-binding sites. Finally, VEGF165 and VEGF189 were released from their bound states by treatment with plasmin. The released 34-kDa dimeric species are active as endothelial cell mitogens and as vascular permeability agents. We conclude that the bioavailability of VEGF may be regulated at the genetic level by alternative splicing that determines whether VEGF will be soluble or incorporated into a biological reservoir and also through proteolysis following plasminogen activation.  相似文献   

17.
CEA-related cell adhesion molecule 1 (CEACAM1) exhibits angiogenic properties in in vitro and in vivo angiogenesis assays. CEACAM1 purified from granulocytes and endothelial cell media as well as recombinant CEACAM1 expressed in HEK293 cells stimulate proliferation, chemotaxis, and capillary-like tube formation of human microvascular endothelial cells. They increase vascularization of chick chorioallantoic membrane and potentiate the effects of vascular endothelial growth factor (VEGF)165. VEGF165 increases CEACAM1 expression both on the mRNA and the protein level. VEGF165-induced endothelial tube formation is blocked by a monoclonal CEACAM1 antibody. These data suggest that CEACAM1 is a major effector of VEGF in the early microvessel formation. Since CEACAM1 is expressed in tumor microvessels but not in large blood vessels, CEACAM1 may be a target for the inhibition of tumor angiogenesis.  相似文献   

18.
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.  相似文献   

19.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) interacts with two high-affinity tyrosine kinase receptors, VEGFR-1 and VEGFR-2, to increase microvascular permeability and induce angiogenesis. Both receptors are selectively expressed by vascular endothelial cells and are strikingly increased in tumor vessels. We used a specific antibody to localize VEGFR-2 (FLK-1, KDR) in microvascular endothelium of normal mouse kidneys and in the microvessels induced by the TA3/St mammary tumor or by infection with an adenoviral vector engineered to express VPF/VEGF. A pre-embedding method was employed at the light and electron microscopic levels using either nanogold or peroxidase as reporters. Equivalent staining was observed on both the luminal and abluminal surfaces of tumor- and adenovirus-induced vascular endothelium, but plasma membranes at interendothelial junctions were spared except at sites connected to vesiculovacuolar organelles (VVOs). VEGFR-2 was also localized to the membranes and stomatal diaphragms of some VVOs. This staining distribution is consistent with a model in which VPF/VEGF increases microvascular permeability by opening VVOs to allow the transendothelial cell passage of plasma and plasma proteins.  相似文献   

20.
Vascular endothelial growth factor (VEGF) is a major mediator of vasculogenesis and angiogenesis both during development and in pathological conditions. VEGF has a variety of effects on vascular endothelium, including the ability to stimulate endothelial cell mitogenesis, and the potent induction of vascular permeability. These activities are at least in part mediated by binding to two high affinity receptors, VEGFR-1 and VEGFR-2. In this study we have made mutations of mouse VEGF in order to define the regions that are required for VEGFR-2-mediated functions. Development of a bioassay, which responds only to signals generated by cross-linking of VEGFR-2, has allowed evaluation of these mutants for their ability to activate VEGFR-2. One mutant (VEGF0), which had amino acids 83-89 of VEGF substituted with the analogous region of the related placenta growth factor, demonstrated significantly reduced VEGFR-2 binding compared with wild type VEGF, indicating that this region was required for VEGF-VEGFR-2 interaction. Intriguingly, when this mutant was evaluated in a Miles assay for its ability to induce vascular permeability, no difference was found when compared with wild type VEGF. In addition we have shown that the VEGF homology domain of the structurally related growth factor VEGF-D is capable of binding to and activating VEGFR-2 but has no vascular permeability activity, indicating that VEGFR-2 binding does not correlate with permeability activity for all VEGF family members. These data suggest different mechanisms for VEGF-mediated mitogenesis and vascular permeability and raise the possibility of an alternative receptor mediating vascular permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号