首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Zhang L  Han TZ 《生理科学进展》2010,41(4):275-278
长时程增强(LTP)是突触传递功能可塑性的重要表现形式,是大脑内信息储存和记忆形成的细胞机制。近年来的研究资料表明,LTP诱导后,神经元的某些活动可使其翻转(LTP reversal),或称为去强化(depotentiation)。LTP翻转在一些生理功能的完成中具有重要作用,早时相LTP翻转参与了神经环路的细化过程,而晚时相LTP翻转可能是消除有害的或病理性记忆(如痛觉记忆、成瘾记忆)的重要机制之一。因而近年来LTP翻转研究成为神经科学领域的研究热点。本文对引起LTP翻转的条件与机制方面的研究资料予以综述。  相似文献   

2.
Wu MN  Qi JS  Qiao JT 《生理科学进展》2006,37(3):239-242
认知、学习和记忆功能的进行性下降,是阿尔采末病(AD)的主要临床特征,其发病机制一般认为与β-淀粉样蛋白(Aβ)在脑内的沉积以及由此产生的神经毒性作用有关。海马长时程增强(LTP)是反映突触传递可塑性的重要指标之一,被认为与学习和记忆的形成有关。本文结合近年来对离体、在体以及转基因动物多方面的研究进展,扼要介绍了Aβ及其活性片段对海马LTP的影响,并从离子通道/受体、蛋白激酶、逆行信使和基因突变等方面阐述了Aβ抑制LTPT的可能机制。  相似文献   

3.
Proteases involved in long-term potentiation   总被引:6,自引:0,他引:6  
Much attention has been paid to proteases involved in long-term potentiation (LTP). Calpains, Ca-dependent cysteine proteases, have first been demonstrated to be the mediator of LTP by the proteolytic cleavage of fodrin, which allows glutamate receptors located deep in the postsynaptic membrane to move to the surface. It is now generally considered that calpain activation is necessary for LTP formation in the cleavage of substrates such as protein kinase Czeta, NMDA receptors, and the glutamate receptor-interacting protein. Recent studies have shown that serine proteases such as tissue-type plasminogen activator (tPA), thrombin, and neuropsin are involved in LTP. tPA contributes to LTP by both receptor-mediated activation of cAMP-dependent protein kinase and the cleavage of NMDA receptors. Thrombin induces a proteolytic activation of PAR-1, resulting in activation of protein kinase C, which reduces the voltage-dependent Mg2+ blockade of NMDA receptor-channels. On the other hand, neuropsin may act as a regulatory molecule in LTP via its proteolytic degradation of extracellular matrix protein such as fibronectin. In addition to such neuronal proteases, proteases secreted from microglia such as tPA may also contribute to LTP. The enzymatic activity of each protease is strictly regulated by endogenous inhibitors and other factors in the brain. Once activated, proteases can irreversibly cleave peptide bonds. After cleavage, some substrates are inactivated and others are activated to gain new functions. Therefore, the issue to identify substrates for each protease is very important to understand the molecular basis of LTP.  相似文献   

4.
Calcium signals in long-term potentiation and long-term depression   总被引:6,自引:0,他引:6  
We describe postsynaptic Ca2+ signals that subserve induction of two forms of neuronal plasticity, long-term potentiation (LTP) and long-term depression (LTD), in rat hippocampal neurons. The common induction protocol for LTP, a 1-s, 50-Hz tetanus, generates Ca2+ increases of about 50-Hz in dendritic spines of CA1 neurons. These very large increases, measured using a low affinity indicator (Mg fura 5), were found only in the spines and tertiary dendrites, and were dependent upon influx through N-methyl-D-aspartate (NMDA) gated channels. High affinity Ca2+ indicators (e.g., fura 2) are unable to demonstrate these events. In acute slices, neighboring dendritic branches often showed very different responses to a tetanus, and in some instances, neighboring spines on the same dendrite responded differently. LTD in mature CA1 neurons was induced by a low frequency stimulus protocol (2 Hz, 900 pulses), in the presence of GABA- and NMDA-receptor blockers. This LTD protocol produced dendritic Ca2+ increases of <1 microM. Duration of the Ca2+ increase was approximately 30 s and was due to voltage-gated Ca2+ influx. Finally, the ability of synaptically addressed Ca2+ stores to release Ca2+ was studied in CA3 neurons and was found to require immediate preloading and high intensity presynaptic stimulation, conditions unlike normal LTP-LTD protocols.  相似文献   

5.
The role of copper on the CA1 piramidal neurons and their sinaptic connections to the Schaffer's collateral was investigated using the field excitatory post-sinaptic potential (fEPSP). The same fEPSP was used to study copper effects on Long-term potentiation (LTP). We have found that copper 10 microM has an inhibitory action on the fEPSP. Similar effects were demonstrated with 10 microM of GABA. Moreover, copper showed a strong inhibitory action on the consolidated LTP. However, copper washout left a significant and persistent excitatory response. In our opinion, copper shows a dual sinaptic effect depending on the sinaptic experience.  相似文献   

6.
The current excitement in long-term potentiation   总被引:17,自引:0,他引:17  
  相似文献   

7.
突触长时程增强形成机制的研究进展   总被引:13,自引:0,他引:13  
Xu L  Zhang JT 《生理科学进展》2001,32(4):298-301
高等动物脑内突触传递的可塑性是近30年来神经科学研究的热点,突触传递长时程增强(long-term potentiation,LTP)是神经元可塑性的反映,其形成主要与突触后机制有关。过去关于LTP机制的研究主要集中于N-甲基-D门冬氨酸(NMDA)受体的特征及该受体被激活后的细胞内级联反应,现认为脑内存在只具有NMDA受体而不具有α-氨基羟甲基恶唑丙酸(AMPA)受体的“静寂突触(silent synapse)”,这一概念的提出,使人们认识到AMPA受体在LTP表达的突触后机制中的重要作用。  相似文献   

8.
9.
Searching for premonitory studies of hippocampal long-term potentiation (LTP), there is a paucity of data. While synaptic enhancement during repetitive activation was studied in several reports from many groups between 1955 and 1967, the reported after-effects were short, at the most lasting a few minutes. Responses lasting for more than 1 hour were not reported until 1973.  相似文献   

10.
This paper describes circumstances around the discovery of long-term potentiation (LTP). In 1966, I had just begun independent work for the degree of Dr medicinae (PhD) in Per Andersen's laboratory in Oslo after an eighteen-month apprenticeship with him. Studying the effects of activating the perforant path to dentate granule cells in the hippocampus of anaesthetized rabbits, I observed that brief trains of stimuli resulted in increased efficiency of transmission at the perforant path-granule cell synapses that could last for hours. In 1968, Tim Bliss came to Per Andersen's laboratory to learn about the hippocampus and field potential recording for studies of possible memory mechanisms. The two of us then followed up my preliminary results from 1966 and did the experiments that resulted in a paper that is now properly considered to be the basic reference for the discovery of LTP.  相似文献   

11.
Quantal analysis is useful for assessing the pre- and/or post-synaptic locus of the expression of long-term tetanic potentiation with the condition, however, that the studied synaptic potentials have been evoked by single cell stimulations, as is the case with paired recordings of identified neurons. The application of this methodology, primarily with indirect criteria, has produced conclusions which dance back and forth across the synaptic cleft.  相似文献   

12.
与长时程增强相关的基因表达的研究进展   总被引:4,自引:0,他引:4  
Xu H  Han TZ  Chen YW 《生理科学进展》2001,32(2):174-176
长地程增强(long-term potentiation,LTP)现象在细胞水平和分子水平反映突触的可塑性,它被认为是记忆过程中神经元活动的客观电生理指标。对其机制的研究表明,伴随着LTP的产生,有基因表达和蛋白质成分的改变。揭开LTP形成过程中所伴随的基因表达的改变,也许是探讨LTP形成机制的关键。  相似文献   

13.
Li Y  Tan Z  Li Z  Sun Z  Duan S  Li W 《Bioscience reports》2012,32(3):315-321
xCT is the functional subunit of the cystine/glutamate antiporter system xc-, which exchanges intracellular glutamate with extracellular cystine. xCT has been reported to play roles in the maintenance of intracellular redox and ambient extracellular glutamate, which may affect neuronal function. To assess a potential role of xCT in the mouse hippocampus, we performed fear conditioning and passive avoidance for long-term memories and examined hippocampal synaptic plasticity in wild-type mice and xCT-null mutants, sut mice. Long-term memory was impaired in sut mice. Normal basal synaptic transmission and short-term presynaptic plasticity at hippocampal Schaffer collateral-CA1 synapses were observed in sut mice. However, LTP (long-term potentiation) was significantly reduced in sut mice compared with their wild-type counterparts. Supplementation of extracellular glutamate did not reverse the reduction in LTP. Taken together, our results suggest that xCT plays a role in the modulation of hippocampal long-term plasticity.  相似文献   

14.
AMPA receptor trafficking and long-term potentiation   总被引:12,自引:0,他引:12  
Activity-dependent changes in synaptic function are believed to underlie the formation of memories. A prominent example is long-term potentiation (LTP), whose mechanisms have been the subject of considerable scrutiny over the past few decades. I review studies from our laboratory that support a critical role for AMPA receptor trafficking in LTP and experience-dependent plasticity.  相似文献   

15.
Circadian regulation of hippocampal long-term potentiation   总被引:4,自引:0,他引:4  
The goal of this study is to investigate the possible circadian regulation of hippocampal excitability and long-term potentiation (LTP) measured by stimulating the Schaffer collaterals (SC) and recording the field excitatory postsynaptic potential (fEPSP) from the CA1 dendritic layer or the population spike (PS) from the soma in brain slices of C3H and C57 mice. These 2 strains of mice were of interest because the C3H mice secrete melatonin rhythmically while the C57 mice do not. The authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from night slices compared to day slices of both C3H and C57 mice. They also found significant diurnal variation in the decay of LTP measured with fEPSPs, with the decay slower during the night in both strains of mice. There was evidence for a diurnal rhythm in the input/output function of pyramidal neurons measured at the soma in C57 but not C3H mice. Furthermore, LTP in the PS, measured in slices prepared during the day but recorded during the night, had a profile remarkably similar to the night group. Finally, PS recordings were carried out in slices from C3H mice maintained in constant darkness prior to experimentation. Again, the authors found that the magnitude of the enhancement of the PS was significantly greater in LTP recorded from subjective night slices compared to subjective day slices. These results provide the 1st evidence that an endogenous circadian oscillator modulates synaptic plasticity in the hippocampus.  相似文献   

16.
Mechanism of TrkB-mediated hippocampal long-term potentiation   总被引:18,自引:0,他引:18  
The TrkB receptor tyrosine kinase and its ligand, BDNF, have an essential role in certain forms of synaptic plasticity. However, the downstream pathways required to mediate these functions are unknown. We have studied mice with a targeted mutation in either the Shc or the phospholipase Cgamma (PLCgamma) docking sites of TrkB (trkB(SHC/SHC) and trkB(PLC/PLC) mice). We found that hippocampal long-term potentiation was impaired in trkB(PLC/PLC) mice, but not trkB(SHC/SHC) mice. BDNF stimulation of primary neurons derived from trkB(PLC/PLC) mice fully retained their ability to activate MAP kinases, whereas induction of CREB and CaMKIV phosphorylation was strongly impaired. The opposite effect was observed in trkB(SHC/SHC) neurons, suggesting that MAPKs and CREB act in parallel pathways. Our results provide genetic evidence that TrkB mediates hippocampal plasticity via recruitment of PLCgamma, and by subsequent phosphorylation of CaMKIV and CREB.  相似文献   

17.
Postsynaptic control of hippocampal long-term potentiation   总被引:3,自引:0,他引:3  
Long-term potentiation (LTP) in the hippocampus has the property of cooperativity, i.e. greater potentiation is produced if a larger number of afferent fibres is tetanized. The possible involvement of postsynaptic mechanisms in this process was investigated in the CA1 area of the hippocampal slice preparation. Following blockade of postsynaptic inhibition by GABA antagonists, e.g. picrotoxin, the induction of LTP was greatly facilitated. In picrotoxin-treated slices, LTP was induced in a pathway stimulated by single volleys, if these occurred in conjunction with brief tetanic activation of other afferents. This interaction operated over a short period of time (less than 50 ms) and was also present if the inputs were separated in space (cooperativity between inputs to basal and apical dendrites). LTP could be induced by pairing single volley synaptic activation and intracellularly injected depolarizing current pulses, the timing requirements being similar to those observed in the extracellular "conjunction studies". Previous studies have suggested that glutamate receptor channels of the N-methyl-D-aspartate (NMDA) type are somehow involved in LTP induction. Evidence presented here shows that activation leading to LTP evokes a potential which is sensitive to the NMDA receptor blocker 2-amino-5-phosphonovalerate (APV), indicating passage of current through NMDA receptor channels. The results suggest that hippocampal LTP depends on simultaneous presynaptic transmitter release and postsynaptic depolarization in a manner analogous to the model proposed by HEBB (1949) for associative learning. Furthermore, it is proposed that the required pre- and postsynaptic interaction is handled by the NMDA receptor channel complex, which is known to have the required voltage and transmitter sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
《Journal of Physiology》1996,90(5-6):299-303
We have taken a number of different experimental approaches to address whether long-term potentiation (LTP) in hippocampal CA1 pyramidal cells is due primarily to presynaptic or postsynaptic modifications. Examination of miniature EPSCs or EPSCs evoked using minimal stimulation indicate that quantal size increasing during LTP. The conversion of silent to functional synapses may contribute to the LTP-induced changes in mEPSC frequency and failure rate that previously have been attributed to an increase in the probability if transmitter release.  相似文献   

19.
B R Sastry 《Life sciences》1982,30(23):2003-2008
Long-term potentiation of the hippocampal response to repeated stimulation of rat entorhinal cortex occured concomitantly with a decrease in the excitability of presynaptic terminals. It is, therefore, possible that the long-term potentiation is caused, at least partly, by an enhancement of presynaptic efficacy.  相似文献   

20.
血小板激活因子对大鼠海马脑片CA1区LTP的作用   总被引:2,自引:0,他引:2  
目的:为了探讨血小板激活因子(platelet-activating factor,PAF)对大鼠海马脑片CA1区的长时程增强效应(long-term potentiation,LTP)的影响.方法:应用离体脑片电生理记录技术,记录大鼠海马CA1区的兴奋性突触后电位EPSP,研究了PAF对大鼠海马脑片CA1区的突触传递和可塑性的影响.结果:小剂量(1μmol/L)PAF可诱发大鼠海马CA1区LTP的产生;大剂量(10~50μmol/L)PAF不能诱发大鼠海马CA1区LTP的产生,且不能阻止高频电刺激(HFS,100 Hz,1 000 ms×2,每隔20 s给予)Schffer侧支引起的大鼠海马脑片CA1区LTP的形成和维持.大剂量PAF对海马CA1区基础EPSP没有影响.PAF受体拮抗剂银杏苦内酯(ginkgolide B,GB)可拮抗小剂量PAF诱发大鼠海马CA1区LTP的产生.结论:大剂量PAF具有神经毒性,可能是通过抑制海马CA1区的LTP的形成而参与艾滋病痴呆(HIV-1 associated dementia,HAD)的形成机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号