首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the yeast Saccharomyces cerevisiae, the GTP-binding protein Rho1 is required for beta(1-->3)glucan synthase activity, for activation of protein kinase C and the cell integrity pathway and for progression in G1, cell polarization and exocytosis. A genetic screen for cells that become permeabilized at non-permissive temperature was used to isolate in vitro-generated mutants of Rho1p. After undergoing a battery of tests, several of them appeared to be specifically defective in the beta(1-->3) glucan synthesis function of Rho1p. At the non-permissive temperature (37 degrees C), the mutants developed defects in the cell wall, especially at the tip of new buds. In the yeast cell wall, beta(1-->6)glucan is linked to both beta(1-->3)glucan and mannoprotein, as well as occasionally to chitin. We have used the rho1 mutants to study the order of assembly of the cell wall components. The incorporation of [(14)C]-glucose into beta(1-->3)glucan at 37 degrees C was decreased or abolished in the mutants. Concomitantly, a partial defect in the incorporation of label into cell wall mannoproteins and beta(1-->6)glucan was observed. In contrast, YW3458, an inhibitor of glycosylphosphatidylinositol anchor formation, prevented mannoprotein incorporation, whereas the beta(1-->3)-beta(1-->6)glucan complex was synthesized at almost normal levels. As beta(1-->3)glucan can be synthesized in vitro or in vivo independently, we conclude that the order of addition in vivo is beta(1-->3)glucan, beta(1-->6)glucan, mannoprotein. Previous observations indicate that chitin is the last component to be incorporated into the complex.  相似文献   

2.
Formins are actin filament nucleators regulated by Rho-GTPases. In budding yeast, the formins Bni1p and Bnr1p direct the assembly of actin cables, which guide polarized secretion and growth. From the six yeast Rho proteins (Cdc42p and Rho1-5p), we have determined that four participate in the regulation of formin activity. We show that the essential function of Rho3p and Rho4p is to activate the formins Bni1p and Bnr1p, and that activated alleles of either formin are able to bypass the requirement for these Rho proteins. Through a separate signaling pathway, Rho1p is necessary for formin activation at elevated temperatures, acting through protein kinase C (Pkc1p), the major effector for Rho1p signaling to the actin cytoskeleton. Although Pkc1p also activates a MAPK pathway, this pathway does not function in formin activation. Formin-dependent cable assembly does not require Cdc42p, but in the absence of Cdc42p function, cable assembly is not properly organized during initiation of bud growth. These results show that formin function is under the control of three distinct, essential Rho signaling pathways.  相似文献   

3.
Maintaining specific cell size, which is important for many organisms, is achieved by coordinating cell growth and cell division. In the budding yeast Saccharomyces cerevisiae, the existence of two cell-size checkpoints is proposed: at the first checkpoint, cell size is monitored before budding at the G1/S transition, and at the second checkpoint, actin depolymerization occurring in the small bud is monitored before the G2/M transition. Morphological analyses have revealed that the small GTPase Rho1p participates in cell-size control at both the G1/S and the G2/M boundaries. One group of rho1 mutants (rho1A) underwent premature entry into mitosis, leading to the birth of abnormally small cells. In another group of rho1 mutants (rho1B), the mother cells failed to reach an appropriate size before budding, and expression of the G1 cyclin Cln2p began at an earlier phase of the cell cycle. Analyses of mutants defective in Rho1p effector proteins indicate that Skn7p, Fks1p and Mpk1p are involved in cell-size control. Thus, Rho1p and its downstream regulatory pathways are involved in controlling cell size in S. cerevisiae.  相似文献   

4.
The RHO1 gene in Saccharomyces cerevisiae encodes a homolog of the mammalian RhoA small GTP-binding protein, which is implicated in various actin cytoskeleton-dependent cell functions. In yeast, Rho1p is involved in bud formation. A yeast strain in which RHO1 is replaced with RhoA shows a recessive temperature-sensitive growth phenotype. A dominant suppressor mutant was isolated from this strain. Molecular cloning of the suppressor gene revealed that the mutation occurred at the pseuodosubstrate site of PKC1, a yeast homolog of mammalian protein kinase C. Two-hybrid analysis demonstrated that GTP-Rho1p, but not GDP-Rho1p, interacted with the region of Pkc1p containing the pseudosubstrate site and the C1 domain. MKK1 and MPK1 encode MAP kinase kinase and MAP kinase homologs, respectively, and function downstream of PKC1. A dominant active MKK1-6 mutation or overexpression of MPK1 suppressed the temperature sensitivity of the RhoA mutant. The dominant activating mutation of PKC1 suppressed the temperature sensitivity of the RhoA mutant. The dominant activating mutation of PKC1 suppressed the temperature sensitivity of two effector mutants of RHO1, rho1(F44Y) and rho1(E451), but not that of rho1(V43T). These results indicate that there are at least two signaling pathways regulated by Rho1p and that one of the downstream targets is Pkc1p, leading to the activation of the MAP kinase cascade.  相似文献   

5.
Saccharomyces cerevisiae is a multifunctional molecular switch involved in establishment of cell morphogenesis. We systematically characterized isolated temperature-sensitive mutations in the RHO1 gene and identified two groups of rho1 mutations (rho1A and rho1B) possessing distinct functional defects. Biochemical and cytological analyses demonstrated that mutant cells of the rho1A and rho1B groups have defects in activation of the Rho1p effectors Pkc1p kinase and 1,3-beta-glucan synthase, respectively. Heteroallelic diploid strains with rho1A and rho1B mutations were able to grow even at the restrictive temperature of the corresponding homoallelic diploid strains, showing intragenic complementation. The ability to activate both of the essential Rho1p effector proteins was restored in the heteroallelic diploid. Thus, each of the complementing rho1 mutation groups abolishes a distinct function of Rho1p, activation of Pkc1p kinase or 1,3-beta-glucan synthase activity.  相似文献   

6.
The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p.  相似文献   

7.
Schizosaccharomyces pombe Rho1p regulates (1,3)beta-d-glucan synthesis and is required for cell integrity maintenance and actin cytoskeleton organization, but nothing is known about the regulation of this protein. At least nine different S. pombe genes code for proteins predicted to act as Rho GTPase-activating proteins (GAPs). The results shown in this paper demonstrate that the protein encoded by the gene named rga5+ is a GAP specific for Rho1p. rga5+ overexpression is lethal and causes morphological alterations similar to those reported for Rho1p inactivation. rga5+ deletion is not lethal and causes a mild general increase in cell wall biosynthesis and morphological alterations when cells are grown at 37 degrees C. Upon mild overexpression, Rga5p localizes to growth areas and possesses both in vivo and in vitro GAP activity specific for Rho1p. Overexpression of rho1+ in rga5Delta cells is lethal, with a morphological phenotype resembling that of the overexpression of the constitutively active allele rho1G15V. In addition (1,3)beta-d-glucan synthase activity, regulated by Rho1p, is increased in rga5Delta cells and decreased in rga5-overexpressing cells. Moreover, the increase in (1,3)beta-d-glucan synthase activity caused by rho1+ overexpression is considerably higher in rga5Delta than in wild-type cells. Genetic interactions suggest that Rga5p is also important for the regulation of the other known Rho1p effectors, Pck1p and Pck2p.  相似文献   

8.
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. We have identified a new GEF, designated Rgf1p, which specifically regulates Rho1p during polarized growth. The phenotype of rgf1 null cells was very similar to that seen after depletion of Rho1p, 30% of cells being lysed. In addition, rgf1(+) deletion caused hypersensitivity to the antifungal drug Caspofungin and defects in the establishment of bipolar growth. rho1(+), but none of the other GTPases of the Rho-family, suppressed the rgf1Delta phenotypes. Moreover, deletion of rgf1(+) suppressed the severe growth defect in rga1(+) null mutants (a Rho1-GAP, negative regulator). Rgf1p and Rho1p coimmunoprecipitated and overexpression of rgf1(+) specifically increased the GTP-bound Rho1p; it caused changes in cell morphology, and a large increase in beta(1,3)-glucan synthase activity. These effects were similar to those elicited when the hyperactive rho1-G15V allele was expressed. A genetic relationship was observed between Rgf1p, Bgs4p (beta[1,3]-glucan synthase), and Pck1p (protein kinase C [PKC] homologue); Bgs4p and Pck1p suppressed the hypersensitivity to Caspofungin in rgf1Delta mutants. Rgf1p localized to the growing ends and the septum, where Rho1, Pck1p, and Bgs4p are known to function. Our results suggest that Rgf1p probably activates the Rho functions necessary for coordinating actin deposition with cell wall biosynthesis during bipolar growth, allowing the cells to remodel their wall without risk of rupture.  相似文献   

9.
The Rho3 protein plays a critical role in the budding yeast Saccharomyces cerevisiae by directing proper cell growth. Rho3 appears to influence cell growth by regulating polarized secretion and the actin cytoskeleton, since rho3 mutants exhibit large rounded cells with an aberrant actin cytoskeleton. To gain insights into how Rho3 influences these events, we have carried out a yeast two-hybrid screen using an S. cerevisiae cDNA library to identify proteins interacting with Rho3. Two proteins, Exo70 and Myo2, were identified in this screen. Interactions with these two proteins are greatly reduced or abolished when mutations are introduced into the Rho3 effector domain. In addition, a type of mutation known to produce dominant negative mutants of Rho proteins abolished the interaction with both of these proteins. In contrast, Rho3 did not interact with protein kinase C (Pkc1), an effector of another Rho family protein, Rho1, nor did Rho1 interact with Exo70 or Myo2. Rho3 did interact with Bni1, another effector of Rho1, but less efficiently than with Rho1. The interaction between Rho3 and Exo70 and between Rho3 and Myo2 was also demonstrated with purified proteins. The interaction between Exo70 and Rho3 in vitro was dependent on the presence of GTP, since Rho3 complexed with guanosine 5'-O-(3-thiotriphosphate) interacted more efficiently with Exo70 than Rho3 complexed with guanosine 5'-O-(3-thiodiphosphate). Overlapping subcellular localization of the Rho3 and Exo70 proteins was demonstrated by indirect immunofluorescence. In addition, patterns of localization of both Exo70 and Rho3 were altered when a dominant active allele of RHO3, RHO3(E129,A131), which causes a morphological abnormality, was expressed. These results provide a direct molecular basis for the action of Rho3 on exocytosis and the actin cytoskeleton.  相似文献   

10.
Profilin plays an important role in actin organization in all eukaryotic cells through mechanisms that are still poorly understood. We had previously shown that Mid2p, a transmembrane protein and a potential cell wall sensor, is an effective multicopy suppressor of the profilin-deficient phenotype in Saccharomyces cerevisiae. To better understand the role of Mid2p in the organization of the actin cytoskeleton, we isolated five additional multicopy suppressors of pfy1Delta cells that are Rom1p, Rom2p, Rho2p, Smy1p, and the previously uncharacterized protein Syp1p. The problems of caffeine and NaCl sensitivity, growth defects at 30 degrees and 37 degrees, the accumulation of intracellular vesicular structures, and a random budding pattern in pfy1Delta cells are corrected by all the suppressors tested. This is accompanied by a partial repolarization of the cortical actin patches without the formation of visible actin cables. The overexpression of Mid2p, Rom2p, and Syp1p, but not the overexpression of Rho2p and Smy1p, results in an abnormally thick cell wall in wild-type and pfy1Delta cells. Since none of the suppressors, except Rho2p, can correct the phenotype of the pfy1-111/rho2Delta strain, we propose a model in which the suppressors act through the Rho2p signaling pathway to repolarize cortical actin patches.  相似文献   

11.
Lee ME  Singh K  Snider J  Shenoy A  Paumi CM  Stagljar I  Park HO 《Genetics》2011,188(4):859-870
Maintenance of redox homeostasis is critical for the survival of all aerobic organisms. In the budding yeast Saccharomyces cerevisiae, as in other eukaryotes, reactive oxygen species (ROS) are generated during metabolism and upon exposure to environmental stresses. The abnormal production of ROS triggers defense mechanisms to avoid the deleterious consequence of ROS accumulation. Here, we show that the Rho1 GTPase is necessary to confer resistance to oxidants in budding yeast. Temperature-sensitive rho1 mutants (rho1(ts)) are hypersensitive to oxidants and exhibit high accumulation of ROS even at a semipermissive temperature. Rho1 associates with Ycf1, a vacuolar glutathione S-conjugate transporter, which is important for heavy metal detoxification in yeast. Rho1 and Ycf1 exhibit a two-hybrid interaction with each other and form a bimolecular fluorescent complex on the vacuolar membrane. A fluorescent-based complementation assay suggests that the GTP-bound Rho1 associates with Ycf1 and that their interaction is enhanced upon exposure to hydrogen peroxide. The rho1(ts) mutants also exhibit hypersensitivity to cadmium, while cells carrying a deletion of YCF1 or mutations in a component of the Pkc1-MAP kinase pathway exhibit little or minor sensitivity to oxidants. We thus propose that Rho1 protects yeast cells from oxidative stress by regulating multiple downstream targets including Ycf1. Since both Rho1 and Ycf1 belong to highly conserved families of proteins, similar mechanisms may exist in other eukaryotes.  相似文献   

12.
Rho GTPases are regulators of signaling pathways that control actin organization and cell polarity processes in all eukaryotic cells. In Schizosaccharomyces pombe, Rho4p is involved in the regulation of septum degradation during cytokinesis. Here we show that Rho4p participates in the secretion of the glucanases Eng1p and Agn1p, which are responsible for the septum degradation. First, eng1+ or agn1+ overexpression suppressed the rho4delta multiseptation phenotype, and simultaneous overproduction of Rho4p and Eng1p or of Rho4p and Agn1p caused a dramatic lysis. Second, Rho4p was not necessary for Eng1p-mediated glucanase activity as measured in cell extracts; however, rho4delta cells have a lower level of (1,3)-beta-D-glucanase activity in the culture medium. Additionally, Eng1- or Agn1-green fluorescent protein did not properly localize to the septum in rho4delta cells grown at 37 degrees C. There was a decreased amount of these enzymes in the cell wall and in the culture medium of rho4delta cells at 37 degrees C. These results provide evidence that Rho4p is involved in the regulation of Eng1p and Agn1p secretion during cytokinesis.  相似文献   

13.
In budding yeast, chitin is found in three locations: at the primary septum, largely in free form, at the mother-bud neck, partially linked to beta(1-3)glucan, and in the lateral wall, attached in part to beta(1-6)glucan. By using a recently developed strategy for the study of cell wall cross-links, we have found that chitin linked to beta(1-6)glucan is diminished in mutants of the CRH1 or the CRH2/UTR2 gene and completely absent in a double mutant. This indicates that Crh1p and Crh2p, homologues of glycosyltransferases, ferry chitin chains from chitin synthase III to beta(1-6)glucan. Deletion of CRH1 and/or CRH2 aggravated the defects of fks1Delta and gas1Delta mutants, which are impaired in cell wall synthesis. A temperature shift from 30 degrees C to 38 degrees C increased the proportion of chitin attached to beta(1-6)glucan. The expression of CRH1, but not that of CRH2, was also higher at 38 degrees C in a manner dependent on the cell integrity pathway. Furthermore, the localization of both Crh1p and Crh2p at the cell cortex, the area where the chitin-beta(1-6)glucan complex is found, was greatly enhanced at 38 degrees C. Crh1p and Crh2p are the first proteins directly implicated in the formation of cross-links between cell wall components in fungi.  相似文献   

14.
Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1–mitogen-activated protein kinase (MAPK) pathway. A fundamental question is how active Rho1 promotes distinct signaling outputs under different conditions. Here we identified the Zds1/Zds2–protein phosphatase 2ACdc55 (PP2ACdc55) complex as a novel Rho1 effector that regulates Rho1 signaling specificity. Zds1/Zds2–PP2ACdc55 promotes polarized growth and cell wall synthesis by inhibiting Rho1 GTPase-activating protein (GAP) Lrg1 but inhibits CWI pathway by stabilizing another Rho1 GAP, Sac7, suggesting that active Rho1 is biased toward cell growth over stress response. Conversely, upon cell wall damage, Pkc1–Mpk1 activity inhibits cortical PP2ACdc55, ensuring that Rho1 preferentially activates the CWI pathway for cell wall repair. We propose that PP2ACdc55 specifies Rho1 signaling output and that reciprocal antagonism between Rho1–PP2ACdc55 and Rho1–Pkc1 explains how only one signaling pathway is robustly activated at a time.  相似文献   

15.
Rho1p is a yeast homolog of mammalian RhoA small GTP-binding protein. Rho1p is localized at the growth sites and required for bud formation. We have recently shown that Bni1p is a potential target of Rho1p and that Bni1p regulates reorganization of the actin cytoskeleton through interactions with profilin, an actin monomer-binding protein. Using the yeast two-hybrid screening system, we cloned a gene encoding a protein that interacted with Bni1p. This protein, Spa2p, was known to be localized at the bud tip and to be implicated in the establishment of cell polarity. The C-terminal 254 amino acid region of Spa2p, Spa2p(1213–1466), directly bound to a 162-amino acid region of Bni1p, Bni1p(826–987). Genetic analyses revealed that both the bni1 and spa2 mutations showed synthetic lethal interactions with mutations in the genes encoding components of the Pkc1p-mitogen-activated protein kinase pathway, in which Pkc1p is another target of Rho1p. Immunofluorescence microscopic analysis showed that Bni1p was localized at the bud tip in wild-type cells. However, in the spa2 mutant, Bni1p was not localized at the bud tip and instead localized diffusely in the cytoplasm. A mutant Bni1p, which lacked the Rho1p-binding region, also failed to be localized at the bud tip. These results indicate that both Rho1p and Spa2p are involved in the localization of Bni1p at the growth sites where Rho1p regulates reorganization of the actin cytoskeleton through Bni1p.  相似文献   

16.
In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase) Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK), resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-depedent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.  相似文献   

17.
The Rho GTPase family and their effectors are key regulators involved in many eukaryotic cell functions related to actin organization and polarity establishment. Schizosaccharomyces pombe Rho1p is essential, directly activates the (1,3)-beta-d-glucan synthase, and participates in regulation of cell wall growth and morphogenesis. Here we describe the characterization of the fission yeast Rho5p GTPase, highly homologous to Rho1p, sharing 86% identity and 95% similarity. Overexpression of the hyperactive allele rho5-G15V causes a morphological effect similar to that of rho1-G15V, but the penetrance is significantly lower, and overexpression of the dominant-negative allele rho5-T20N causes lysis like that of rho1-T20N. Importantly, overexpression of rho5(+) but no other rho genes is able to rescue the lethality of rho1Delta cells. Shutoff experiments indicated that Rho5p can replace Rho1p, but it is not as effective in maintaining cell wall integrity or actin organization. rho5(+) expression is hardly detected during log-phase growth but is induced under nutritional starvation conditions. rho5Delta cells are viable and do not display any defects during logarithmic growth. However, when rho1(+) expression is repressed during stationary phase, rho5Delta cells display reduced viability. Ascospores lacking Rho5p are less resistant to heat or lytic enzymes than wild-type spores. Moreover, h(90) mutant strains carrying the hyperactive rho5-G15V or the dominant-negative rho5-T20N alleles display severe ascospore formation defects. These results suggest that Rho5p functions in a way similar to, but less efficient than, Rho1p, plays a nonessential role during stationary phase, and participates in the spore wall formation.  相似文献   

18.
Schizosaccharomyces pombe rho1(+) and rho2(+) genes are involved in the control of cell morphogenesis, cell integrity, and polarization of the actin cytoskeleton. Although both GTPases interact with each of the two S. pombe protein kinase C homologues, Pck1p and Pck2p, their functions are distinct from each other. It is known that Rho1p regulates (1,3)beta-D-glucan synthesis both directly and through Pck2p. In this paper, we have investigated Rho2p signaling and show that pck2 delta and rho2 delta strains display similar defects with regard to cell wall integrity, indicating that they might be in the same signaling pathway. We also show that Rho2 GTPase regulates the synthesis of alpha-D-glucan, the other main structural polymer of the S. pombe cell wall, primarily through Pck2p. Although overexpression of rho2(+) in wild-type or pck1 delta cells is lethal and causes morphological alterations, actin depolarization, and an increase in alpha-D-glucan biosynthesis, all of these effects are suppressed in a pck2 delta strain. In addition, genetic interactions suggest that Rho2p and Pck2p are important for the regulation of Mok1p, the major (1-3)alpha-D-glucan synthase. Thus, a rho2 delta mutation, like pck2 delta, is synthetically lethal with mok1-664, and the mutant partially fails to localize Mok1p to the growing areas. Moreover, overexpression of mok1(+) in rho2 delta cells causes a lethal phenotype that is completely different from that of mok1(+) overexpression in wild-type cells, and the increase in alpha-glucan is considerably lower. Taken together, all of these results indicate the presence of a signaling pathway regulating alpha-glucan biosynthesis in which the Rho2p GTPase activates Pck2p, and this kinase in turn controls Mok1p.  相似文献   

19.
One of the essential protein substrates of geranylgeranyl transferase type I in the budding yeast Saccharomyces cerevisiae is a rho-type GTPase, Rho1p, which is a regulatory subunit of 1, 3-beta-glucan synthase. Previous studies have indicated that modification of Rho1p is significantly reduced in a mutant of the beta subunit of geranylgeranyl transferase type I called cal1-1. Here we present genetic and biochemical evidence showing that modification of Rho1p is required for activity of 1,3-beta-glucan synthase. The 1,3-beta-glucan synthase activity of the cal1-1 membrane was significantly reduced compared with that of the wild-type membrane. The impaired activity was partly due to the reduced amount of Fks1p, a putative catalytic subunit of 1, 3-beta-glucan synthase, but also partly due to reduced affinity between unmodified Rho1p and Fks1p. Glutathione S-transferase (GST)-Rho1 proteins with or without the C-terminal motif required for the modification were purified and used to analyze the interaction. The modified form of GST-Rho1p was specifically able to restore the 1,3-beta-glucan synthase of the rho1-3 membrane. Gel overlay analysis indicated that an unmodified form of GST-Rho1p fails to interact with Fks1p. These results indicated that the geranylgeranylation of Rho1p is a prerequisite to the assembly and activation of 1,3-beta-glucan synthase in vitro. Increased cytoplasmic levels of divalent cations such as Ca(2+) restored both Rho1p modification and the 1,3-beta-glucan synthase activity of cal1-1, suggesting that cytoplasmic levels of the divalent cations affect geranylgeranyl transferase type I activity in vivo.  相似文献   

20.
Candida albicans RHO1 is required for cell viability in vitro and in vivo   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, Rho1p plays an important role in cell wall integrity by regulating beta-1,3-glucan synthase, Pkc1p and the actin cytoskeleton. To determine the physiological role of Rho1p in the dimorphic fungus Candida albicans, the major human fungal pathogen, we constructed mutants that conditionally express Rho1p from the glucose-repressible phosphoenolpyruvate carboxykinase promoter (pPCK1). We examined the growth of these cells in a range of conditions. Depletion of Rho1p from yeast cells resulted in cell death, lysis, and aggregation. The Rho1p conditional mutant was inviable on 10% serum indicating that Rho1p was also required for hyphal viability. Furthermore, in a mouse model of systemic candidiasis, strains dependent on pPCK1-driven RHO1 expression failed to colonise the kidneys and establish disease, suggesting that the level of glucose in serum was sufficient to repress the pPCK1 and that Rho1p-depleted strains were inviable within the host. Therefore, Rho1p is essential for the viability of C. albicans in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号