首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of the multilayer graphic and plastic reconstruction methods using series of semithin sections, spatial tridimensional organization of the epithelial complexes and blood microcirculatory bed in the rat palatal salivary glands and the lacrimal gland of the human newborn have been studied. Since their ducts serve not only for discharging their secrete into the external medium, but also for accumulation (as collectors), the sublobular unit--adenomere should be referred to as a part of elementary level of organization of the epithelial complexes. The adenomere has in its composition a collecting centrally situating duct. However, while studying structure of the blood microcirculatory bed, it is found out that there is not any strict territorial correspondence between its functional units and structural units of the glandular epithelium. Nevertheless, giving a great importance to a tight syntopic connection of the collecting ducts of the adenomeres with the postcapillary venules (that belong to filtrating microvessels), these are sublobular units--adenomeres that are distinguished as structural-functional units in the glands.  相似文献   

2.
The structure of the postcapillary venules in the rat lymph nodes has been studied after a single total overheating at 43.5 degrees C. During the first three days an essential role is played by ultrastructural destructive processes, that demonstrate certain unfavourable states in cells. Nevertheless, the postcapillary venules perform their function quite satisfactory and even increase small lymphocytes transfer. The 7th-15th days are characterized with a steady compensation of the functional activity of these microvessels. By the 30th day some unfavourable changes in the endothelial ultrastructure are noted. This is, evidently, connected with a steady effect of the plasma toxic factor on the endothelium.  相似文献   

3.
At portal hypertension, produced by means of experimental stenosis of the portal vein in the hemomicrocirculatory bed of hollow organs of the gastrointestinal tract, congestive phenomena and edema of walls in the organs are observed. Manifested dilatation is noted in the lumen of arterioles, venules, postcapillary venules and capillaries. At early stages after the operation average diameters of these vessels in the submucosal base of the small intestine become increased 3-7 times and they do not return to the initial size even at late stages. The precapillary sphincters are in the state of spasm. Overdistention of walls in microvessels of the venular part of the functional module results in their increased permeability, that is demonstrated as diapedesic hemorrhages. During formation of intraorganic and extraorganic peripheral pathways of the circulation, the congestive phenomena in the hemomicrocirculatory bed disappear gradually.  相似文献   

4.
The reconstruction of the mesenterium microcirculatory bed was performed intravitally in albino rats and cats after biomicrophotograms. The number, length and caliber of arterioles, pericapillary arteriolec, capillaries, postcapillary venules and venules of the mesenterium were measured. According to these data summary indices of the cross section, surface and volume of the vessels of various functional subdivisions of the microcirculatory bed were calculated. The blood volume entering the microcirculatory system of the albino rat's mesenterium is distributed in the vessels as follows: 8,4% -- arterioles, 10,2% -- pericapillary arterioles, 41,9% -- capillaries, 22,1% -- postcapillary venules and 17,4% -- venules. Similar correlations were found in the cat. The working surface of capillaries is 60--70% of the working surface of all the vessels of the mesenterial microcirculatory system. The evidence of the functional variability of the microcirculatory bed geometry depending on the tissue needs in blood supply is presented.  相似文献   

5.
We tested the hypothesis that blood flow is distributed among capillary networks in resting skeletal muscle in such a manner as to maintain uniform end-capillary PO2. Oxygen tension in venules draining two to five capillaries was obtained by using the phosphorescence decay methodology in rat spinotrapezius muscle. For 64 postcapillary venules among 18 networks in 10 animals, the mean PO2 was 30.1 Torr (range, 9.7-43.5 Torr) with a coefficient of variation (CV; standard deviation/mean) of 0.26. Oxygen levels of postcapillary venules within a single network or single animal, however, displayed a much smaller CV (0.064 and 0.094, respectively). By comparison, the CV of blood flow in 57 postcapillary venules of 17 networks in 9 animals was 1.27 with a mean flow of 0.011 +/- 0.014 nl/s and a range of 3.7 x 10(-4) to 6.5 x 10(-2) nl/s. Blood flow of postcapillary venules within single networks displayed a lower CV (mean, 0.51), whereas that in individual animals was 0.78. Results indicate that among venular networks, heterogeneity of oxygen tension is less than that of blood flow and within venular networks the heterogeneity of oxygen tension is much less than that of blood flow. In addition, postcapillary PO2 was independent of flow among venules in which both were measured. Results of this study may be attributable to three factors: 1) O2 diffusion between adjacent capillaries and venules, 2) structural remodeling in regions of lower PO2, and 3) O2-dependent local control mechanisms.  相似文献   

6.
Leukocyte rolling on the vascular endothelium requires initial contact between leukocytes circulating in the blood and the vessel wall. Although specific adhesion mechanisms are involved in leukocyte-endothelium interactions, adhesion patterns in vivo suggest other rheological mechanisms also play a role. Previous studies have proposed that the abundance of leukocyte rolling in postcapillary venules is due to interactions between red blood cells (RBCs) and leukocytes as they enter postcapillary expansions, but the details of the fluid dynamics have not been elucidated. We have analyzed the interactions of red and white blood cells as they flow from a capillary into a postcapillary venule using a lattice Boltzmann approach. This technique provides the complete solution of the flow field and quantification of the particle-particle forces in a relevant geometry. Our results show that capillary-postcapillary venule diameter ratio, RBC configuration, and RBC shape are critical determinants of the initiation of cell rolling in postcapillary venules. The model predicts that an optimal configuration of the trailing red blood cells is required to drive the white blood cell to the wall.  相似文献   

7.
Because thrombin has been implicated in sepsis, it has been proposed that antithrombin III (AT III) is beneficial due to its anticoagulatory and antiadhesive effects. Using intravital microscopy, we visualized leukocyte-endothelium interactions in postcapillary venules of the feline mesentery exposed to lipopolysaccharide (LPS). At a concentration of AT III that blocks leukocyte adhesion in postischemic mesentery, we found no role for thrombin in LPS-induced rolling, adhesion and emigration, or microvascular dysfunction. Furthermore, AT III did not attenuate leukocyte-endothelial interactions after tumor necrosis factor-alpha superfusion of the mesentery. In contrast, fucoidan, a selectin inhibitor, prevented almost all LPS-induced rolling and reduced adhesion, emigration, and microvascular dysfunction. In a model of endotoxemia, leukocyte recruitment into mesentery or lungs was unaffected by AT III. Finally, in a human cell system that mimics the flow conditions in vivo, human neutrophils rolled, adhered, and emigrated similar to the feline postcapillary microvessels, and AT III had no effect on leukocyte recruitment induced by LPS. If AT III has beneficial effects in endotoxemia, it is not due to a direct effect upon leukocyte rolling, adhesion, or emigration in postcapillary venules in vivo.  相似文献   

8.
Rolling on the venular endothelium is a critical step in the recruitment of leukocytes during the inflammatory response. P-selectin is a key mediator of leukocyte rolling, which is an early event in the inflammatory cascade; this rolling is likely to be directly regulated by both local fluid shear forces and P-selectin site densities in the microvasculature. However, neither the spatial pattern of P-selectin expression in postcapillary venules nor the effect of local expression patterns on rolling behavior in intact functional venules is known. We investigated the influence of local shear forces and the spatial distribution of endothelial P-selectin in intact blood perfused post capillary venules in anesthetized mice using intravital confocal microscopy, high temporal resolution particle tracking, and immunofluorescent labeling. We demonstrated a shear-dependent increase in average leukocyte rolling velocity that was attributable to a shear-dependent increase in the occurrence of transient leukocyte detachments from the endothelial surface: translational velocity during leukocyte contact with the vessel wall remained constant. P-selectin expression was not different in venules with characteristically different shear rates or diameters but varied significantly within individual venules. In postcapillary venules, regions of high P-selectin expression correlated with regions of slow leukocyte rolling. Thus the characteristically variable leukocyte rolling in vivo is a function of the spatial heterogeneity in P-selectin expression. The study shows how the local hydrodynamic forces and the nonuniform pattern of P-selectin expression affect the behavior of interacting leukocytes, providing direct evidence for the local variation of adhesion molecule expression as a mechanism for the regulation of leukocyte recruitment.  相似文献   

9.
10.
The interaction of leukocytes with endothelial cells is intrinsic to the process of leukocyte extravasation, whether during the entry of blood polymorphonuclear leukocytes and monocytes into sites of acute and chronic inflammation, or during the homing of lymphocytes to lymphoid organs. A lymphocyte surface glycoprotein, defined by monoclonal antibody MEL-14, has been described that appears to mediate lymphocyte recognition of postcapillary venules in peripheral lymph nodes, and to control the migration of lymphocytes from the blood into these lymphoid organs. We now report that the antigenic determinant recognized by MEL-14 is present at high levels on other leukocytes as well, including neutrophils, monocytes, and eosinophils; and we demonstrate involvement of the MEL-14 antigen in neutrophil-endothelial cell interactions. MEL-14 immunoprecipitates a neutrophil surface protein of Mr approximately 100,000, similar in m.w. to the 80,000 to 90,000 dalton lymphocyte surface MEL-14 antigen, and it blocks the interaction of neutrophils with endothelial cells in an in vitro model of adhesion to postcapillary venules in lymph node frozen sections. Neutrophil binding to lymph node venules is also inhibited by PPME, a mannose-6-phosphate-rich yeast polysaccharide that is thought to mimic the endothelial cell ligand for the MEL-14-defined lymphocyte receptor. Interestingly, neither MEL-14 nor PPME exhibit a major effect on neutrophil binding to postcapillary venules in Peyer's patches, suggesting that as for lymphocytes, the neutrophil MEL-14 antigen is involved in recognition of tissue-specific endothelial determinants. Finally, we show that MEL-14 inhibits the capacity of neutrophils to migrate from the blood into sites of acute inflammation in the skin. These observations lead us to propose that receptors for tissue-specific endothelial determinants are utilized by neutrophils and lymphocytes and probably other leukocytes during the physiologic process of leukocyte extravasation in vivo.  相似文献   

11.
小鼠急性低氧暴露时脑微循环障碍的研究   总被引:3,自引:0,他引:3  
本研究旨在通过急性减压缺氧状态下脑微循环改变的观察进一步探讨急性高原病的发生机理。实验采用鼠尾静脉注射吖啶橙荧光素作标记,落射荧光显微镜观察分析。结果表明,急性低氧状态下脑血管普遍扩张,但脑表面微血管的扩张大于脑深部微血管的扩张,微动脉的扩张大于微静脉的扩张;脑表面及深部的毛细血管开放数目增多、密度增加、间距缩小;脑血流随缺氧加重而变慢并有淤积;微血管周围有渗出及出血;神经细胞肿胀,胞浆内有空泡水肿。提示急性高原缺氧状态下脑微循环有明显障碍。  相似文献   

12.
Although pressure elevation in lung postcapillary venules increases endothelial P-selectin expression, the extent to which P-selectin causes lung leukocyte margination remains controversial. To address this issue, we optically viewed postcapillary venules of the isolated blood-perfused rat lung by real-time fluorescence imaging. To determine leukocyte margination in single postcapillary venules, we quantified the fluorescence of leukocytes labeled in situ with rhodamine 6G (R6G). Although baseline fluorescence was sparse, a 10-min pressure elevation by 10 cmH(2)O markedly increased R6G fluorescence. Both stopping blood flow during pressure elevation and eliminating leukocytes from the perfusion blocked the fluorescence increase, affirming that these fluorescence responses were attributable to pressure-induced leukocyte margination. A P-selectin-blocking MAb and the L- and P-selectin blocker fucoidin each inhibited the fluorescence increase, indicating that P-selectin was critical for inducing margination. Time-dependent imaging of blood-borne fluorescent beads revealed reduction of plasma velocity during pressure elevation. After pressure returned to baseline, a similar reduction of plasma velocity, established by manually decreasing the perfusion rate, prolonged margination. Our findings show that in lung postcapillary venules, the decrease in plasma velocity critically determines pressure-induced leukocyte margination.  相似文献   

13.
The interaction of circulating leukocytes with lung microvessels is a critical event in the recruitment of effector cells into the interstitial tissue during episodes of inflammation, including smoking-induced chronic airway disease. In the present study, murine lung tissue transplanted into a dorsal skinfold window chamber in nude mice was used as a model system to study nicotine-induced leukocyte trafficking in vivo. The revascularized lung microvessels were determined to be of pulmonary origin based on their ability to constrict in response to hypoxia. We demonstrated that nicotine significantly enhanced rolling and adhesion of leukocytes within lung microvessels comprising arterioles and postcapillary venules in a dose-dependent manner, but failed to induce leukocyte emigration. Nicotine-induced rolling and adhesion was significantly higher in venules than in arterioles. Treatment of mice with monoclonal antibodies (MAbs) against L-, E-, or P-selectin after exposure of lung allografts to nicotine resulted in variable but significant inhibition of nicotine-induced rolling, whereas nicotine-induced subsequent adhesion was inhibited by MAbs against L- and P-selectin but not E-selectin. Exposure of lung allografts to nicotine along with PD-98059, a mitogen-activated protein kinase (MAPK)-specific inhibitor, resulted in significant inhibition of nicotine-induced rolling and adhesion. In vitro, exposure of murine lung endothelial cells to nicotine resulted in increased phosphorylation of mitogen-activated/extracellular signal-regulated protein kinase 1/2, which could be blocked by PD-98059. Overall, these results suggest that nicotine-induced inflammation in the airways could potentially be due to MAPK-mediated, selectin-dependent leukocyte-endothelial cell interactions in the lung microcirculation.  相似文献   

14.
By means of classical anatomical techniques: injection of contrast masses into the vascular network, macro-microscopic preparation, translucency, roentgenography, and some histological techniques, peculiarities of the hemomicrocirculatory bed in muscles of the human arm and forearm have been revealed. Small arteries of the 3d-4th order run along the muscle fiber fasciculi. In the center of the 2d order muscle fasciculus, in its internal perimysium, arteriole and venule (or 2 venules) run; from them into the 1st order fasciculus, precapillary arterioles and postcapillary venules, connected by means of capillaries, run. The arteriole and the venule, accompanying it, together with the precapillary arterioles and postcapillary venules, branching off them, form a unit of the microcirculatory bed of the arm and forearm muscles (module). Well developed intramuscular arterial anastomoses, presence of isolated structural-functional units of the hemomicrocirculatory bed ensure functional prosperity of the human muscles.  相似文献   

15.
Functional digital subtraction sialography with a water soluble radiopaque agent (verografin) made it possible to investigate the structure and functional changes in the salivary glands of 26 patients with a minimum injury of the glands. The method permitted a decrease in a dose of the agent 4 times as compared to routine sialography; the consumption of x-ray film was decreased 5-fold. Digital processing of images helped avoid superimposing of the cranial bone components, improving the quality of images of the salivary glands. The method is indispensable during differential diagnosis, especially at early stages of diseases of the salivary glands.  相似文献   

16.
By means of macro-microscopical preparation methods, horseradish peroxidase injection, semithin sections, electron microscopy histotopography and composition of microvessels of the sciatic nerve have been studied in 20 mature male white rats. The perineural membrane has been stated to have no its own vascular network. In composition of the sciatic nerve and its large branches muscular venules are revealed; they run longitudinally along the whole length of the endoneural space and are tributaries of the epineural veins. A suggestion is made that presence of the contractile apparatus in the venular wall can play an important role in formation of the postcapillary resistance, regulating the hydrostatic pressure value in the lumen of endoneural capillaries ad intensity of liquor filtration into the interstitial space.  相似文献   

17.
This report describes the morphology of the smooth muscle cells, pericytes, and the perivascular autonomic nerve plexus of blood vessels in the rat mammary gland as visualized by scanning electron microscopy after removal of connective-tissue components. From the differences in cellular morphology, eight vascular segments were identified: 1) terminal arterioles (10-30 microns in outer diameter), with a compact layer of spindle-shaped and circularly oriented smooth muscle cells; 2) precapillary arterioles (6-12 microns), with a less compact layer of branched smooth muscle cells having circular processes; 3) arterial capillaries (4-7 microns), with " spidery " pericytes having mostly circularly oriented processes; 4) true capillaries (3-5 microns), with widely scattered pericytes having longitudinal and several circular processes; 5) venous capillaries (5-8 microns), with spidery pericytes having ramifying processes; 6) postcapillary venules (10-40 microns), with clustered spidery pericytes; 7) collecting venules (30-60 microns), with a discontinuous layer of circularly oriented and elongated stellate or branched spindle-shaped cells which may represent primitive smooth muscle cells; and 8) muscular venules (over 60 microns), with a discontinuous layer of ribbon-like smooth muscle cells having a series of small lateral projections. No focal precapillary sphincters were found. The nerve plexus appears to innervate terminal arterioles densely and precapillary arterioles less densely. Fine nerve fibers are only occasionally associated with arterial capillaries. Venous microvessels in the rat mammary gland seemingly lack innervation.  相似文献   

18.
The Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands provide critical guidance cues at points of cell-to-cell contact. It has recently been reported that the ephrin-B2 ligand is a molecular marker for the arterial endothelium at the earliest stages of embryonic angiogenesis, while its receptor EphB4 reciprocally marks the venous endothelium. These findings suggested that ephrin-B2 and EphB4 are involved in establishing arterial versus venous identity and perhaps in anastamosing arterial and venous vessels at their junctions. By using a genetically engineered mouse in which the lacZ coding region substitutes and reports for the ephrin-B2 coding region, we demonstrate that ephrin-B2 expression continues to selectively mark arteries during later embryonic development as well as in the adult. However, as development proceeds, we find that ephrin-B2 expression progressively extends from the arterial endothelium to surrounding smooth muscle cells and to pericytes, suggesting that ephrin-B2 may play an important role during formation of the arterial muscle wall. Furthermore, although ephrin-B2 expression patterns vary in different vascular beds, it can extend into capillaries about midway between terminal arterioles and postcapillary venules, challenging the classical conception that capillaries have neither arterial nor venous identity. In adult settings of angiogenesis, as in tumors or in the female reproductive system, the endothelium of a subset of new vessels strongly expresses ephrin-B2, once again contrary to earlier views that such new vessels lack arterial/venous characteristics and derive from postcapillary venules. While earlier studies had focused on a role for ephrin-B2 during the earliest embryonic stages of arterial/venous determination, our current findings using ephrin-B2 as an arterial marker in the adult challenge prevailing views of the arterial/venous identity of quiescent as well as remodeling adult microvessels and also highlight a possible role for ephrin-B2 in the formation of the arterial muscle wall.  相似文献   

19.
Under normal circumstances, salivary glands of female ixodid ticks begin degenerating within hours of completing the blood meal. We have monitored cytological, functional and biochemical changes in the tissue which are diagnostic of the degenerative process. Although ultimately degeneration also befalls salivary glands of partially fed ticks removed prematurely from the host, the process is considerably delayed. When we transplanted salivary glands from partially fed ticks into the haemocoels of replete specimens, autolysis was induced in the donor tissue, whereas such was not the case when similar glands were transplanted to the haemocoels of other partially fed ticks. We thus suggest that a humoral factor is involved in postprandial resorption of the salivary glands. Succinate dehydrogenase activity decreases, and acid phosphatase activity increases in the salivary glands as a function of time post-engorgement. However, these enzyme assays are not sensitive enough to detect the earliest stages of autolysis.  相似文献   

20.
Current approaches to high-field functional MRI (fMRI) provide 2 means to map hemodynamics at the level of single vessels in the brain. One is through changes in deoxyhemoglobin in venules, i.e., blood oxygenation level–dependent (BOLD) fMRI, while the second is through changes in arteriole diameter, i.e., cerebral blood volume (CBV) fMRI. Here, we introduce cerebral blood flow–related velocity-based fMRI, denoted CBFv-fMRI, which uses high-resolution phase contrast (PC) MRI to form velocity measurements of flow. We use CBFv-fMRI in measure changes in blood velocity in single penetrating microvessels across rat parietal cortex. In contrast to the venule-dominated BOLD and arteriole-dominated CBV fMRI signals, CBFv-fMRI is comparable from both arterioles and venules. A single fMRI platform is used to map changes in blood pO2 (BOLD), volume (CBV), and velocity (CBFv). This combined high-resolution single-vessel fMRI mapping scheme enables vessel-specific hemodynamic mapping in animal models of normal and diseased states and further has translational potential to map vascular dementia in diseased or injured human brains with ultra–high-field fMRI.

This study presents a phase contrast-based, high field MRI-based approach for the functional mapping of cerebral blood velocity in individual cortical arterioles and venules in the rat cortex; this approach can be combined with previously established approaches to map BOLD, CBV, and blood velocity from penetrating microvessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号