首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Six highly purified forms of rabbit microsomal cytochrome P-450, isolated from hepatic microsomes, exhibit differences in the regiospecific metabolism of progesterone. Only one of the isozymes studied, form 1, catalyzes the formation of deoxycorticosterone from progesterone at an appreciable rate. This cytochrome P-450 isozyme may participate in the conversion of progesterone to deoxycorticosterone during pregnancy. All six forms of cytochrome P-450 catalyze 6β- and 16α-hydroxylation at the two concentrations of progesterone tested. Form 3b exhibits a lower apparent Km for 6β-hydroxylation than the other five.  相似文献   

2.
A monoclonal antibody specific for cytochrome P-450 1 that extensively (greater than 95%) inhibits the hepatic 21-hydroxylation of progesterone was used in a two-site immunoradiometric assay to estimate the concentration of cytochrome P-450 1 in microsomes prepared from 24 individual, untreated New Zealand White rabbits. The progesterone 21-hydroxylase activities of these microsomes ranged from 0.2 to 5.8 nmol min-1 mg microsomal protein-1. Scatchard analysis revealed similar slopes and thus apparent affinities between the antibody and microsome samples that varied greater than 10-fold in 21-hydroxylase activity. The maximal extent of binding of the antibody to different microsomal preparations was greater for microsomes exhibiting high as compared to low 21-hydroxylase activity, suggesting that the level of binding reflects the microsomal content of P-450 1. Quantitation was based on the extent of binding of the 125I-labeled monoclonal antibody to P-450 1 sequestered from a sample by a heterologous monoclonal antibody adsorbed to the wells of a microtiter plate. These results indicate that the microsomal content of P-450 1 varies from less than 0.05 to 0.5 nmol/mg microsomal protein. The microsomal content of this antigen as determined in the two-site immunoradiometric assay was highly correlated (r = 0.97) with progesterone 21-hydroxylase activity. Linear regression analysis was used to estimate the turnover number for progesterone in situ, yielding a value of 11 nmol deoxycorticosterone formed min-1 nmol microsomal P-450 1(-1). This is similar to the value of 14 nmol deoxycorticosterone formed min-1 nmol-1 obtained for the reconstituted, purified P-450 1 used as a standard in the immunoquantitation assay.  相似文献   

3.
For clarification of the effects of steroid concentration on steroidogenesis of adrenal microsomes, the kinetic parameters, Km and kcat, were determined in the steady-state for progesterone and 17 alpha-hydroxyprogesterone metabolism catalyzed by P-450C21 and P-450(17 alpha lyase) in guinea pig adrenal microsomes. At a high concentration of progesterone, it was equally metabolized by P-450C21 and P-450(17 alpha lyase), while at a low concentration, it was hydroxylated at 17 alpha-position with twice higher rate than at 21-position. 17 alpha-Hydroxyprogesterone is apparently metabolized preferentially by P-450C21 at any concentration. Although the productions of deoxycortisol and androstenedione from 17 alpha-hydroxyprogesterone were strongly inhibited by progesterone, androstenedione formation from progesterone was not inhibited by a high concentration of progesterone. The addition of liposomal P-450C21 to the reaction medium containing adrenal microsomes caused a decrease in the concentration of 17 alpha-hydroxyprogesterone released into the medium in the steady state reaction, but this had no effect on the activity of androstenedione formation from high concentrations of progesterone. It thus follows that androstenedione is produced by successive monooxygenase reactions without the release of 17 alpha-hydroxyprogesterone from P-450(17 alpha lyase) at a high concentration of progesterone, which is the condition of the adrenal microsomes in vivo.  相似文献   

4.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

5.
A cDNA, p1-88, was cloned from a library constructed using rabbit liver mRNA. Sequence analysis indicates that p1-88 is highly similar (congruent to 95%) to the cDNA, p1-8, that encodes rabbit liver cytochrome P-450 1 and that had been isolated from the same library. The predicted amino acid sequence of the protein encoded by p1-88, P-450 IIC4, differs at 25 of 487 amino acids from that encoded by p1-8. P-450 IIC4 was synthesized in vitro using rabbit reticulocyte lysate primed with RNA transcribed from the coding sequence of p1-88 using a bacteriophage T7 RNA polymerase/promoter system. P-450 IIC4 reacts with two monoclonal antibodies that recognize P-450 1 and exhibits the same relative electrophoretic mobility as P-450 1. In contrast, the reactivity of a third monoclonal antibody recognizing P-450 1, 1F11, toward P-450 IIC4 synthesized in vitro is greatly diminished. The latter antibody extensively inhibits hepatic progesterone 21-hydroxylase activity and recognizes phenotypic differences among rabbits in the microsomal concentration of P-450 1. This difference in the immunoreactivity of P-450 IIC4 and P-450 1 with the 1F11 antibody suggests that P-450 IIC4 does not contribute significantly to hepatic progesterone 21-hydroxylase activity. S1 nuclease mapping demonstrates that the expression of mRNAs corresponding to p1-88 are expressed to equivalent extents in rabbits exhibiting high and low expression of mRNAs corresponding to p1-8. Thus, P-450 1 differs from the protein encoded by p1-88, in its regulation, immunoreactivity, and by inference its catalytic properties although the amino acid sequences of P-450 1 and P-450 IIC4 are highly similar (congruent to 95%).  相似文献   

6.
Rabbits exhibit phenotypic differences, 21H and 21L, in the rate of hepatic progesterone 21-hydroxylation that reflect 10-fold higher microsomal concentrations of cytochrome P-450 1 in 21H rabbits. A cDNA library in pBR322 was prepared from liver mRNA isolated from a 21H rabbit. A clone, p1-8, producing a hybrid protein resulting from the insertion of the cDNA into the beta-lactamase gene of the plasmid expressed 5 distinct epitopes that were recognized by a panel of monoclonal antibodies developed toward P-450 1. RNAs selected from total hepatic mRNA by filter hybridization with p1-8 yield at least two electrophoretically distinct proteins when translated in vitro and immunoprecipitated with the 3C3 monoclonal antibody. Only one of the two proteins is recognized by the 1F11 monoclonal antibody, which is highly specific for P-450 1, and the immunoprecipitated protein exhibits the electrophoretic mobility of P-450 1. The other protein remains unidentified. Northern blot analysis indicates that the 3' noncoding portion of p1-8 hybridizes to higher steady state concentrations of polyadenylated RNA in the 21H as compared to 21L rabbits. This correspondence in expression with that of P-450 1 in the 21H and 21L phenotypes further suggests that p1-8 encodes P-450 1 or a closely related protein. The cDNA is 1871 base pairs in length and encodes a protein of 487 amino acids. Southern blot analysis indicates that several independent, gene-like sequences hybridize with the 3' noncoding region of p1-8 under conditions of high stringency. These results indicate that P-450 1 is a member of an extensive multigene family.  相似文献   

7.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration.  相似文献   

8.
Cytochrome P-450 reductase and cytochrome P-450 fractions have been separated and partially purified from colonic mucosal microsomes of rat pretreated with phenobarbital or beta-naphthoflavone. Colonic cytochrome P-450 reductase has a molecular weight of 76,000. The Km values of colonic cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, ferricyanide, and dichlorophenolindophenol and the electron donor NADPH are 6, 50, 11 and 11 microM, respectively. Immunochemical techniques identified the presence of beta-naphthoflavone Forms 1, 4 and 5 after beta-naphthoflavone treatment but beta-naphthoflavone Forms 1 and 4 and phenobarbital Form 1 after phenobarbital treatment.  相似文献   

9.
The steroid 15β-hydroxylase system of Bacillus megaterium was obtained in a cell-free preparation through sonication. The strictly NADPH-dependent 15β-hydroxylase activity, measured using progesterone as substrate, was inhibited by carbon monoxide, SKF 525-A, imidazole and metyrapone, indicating that the reaction is cytochrome P-450-dependent. A 40-fold purification of cytochrome P-450 in cell-free extracts was obtained by chromatography on DEAE-cellulose yielding a concentration of 0.32 nmoles of cytochrome P-450 per mg of protein. This partially purified cytochrome P-450 preparation catalyzed 15β- and 15α-hydroxylation of progesterone in the presence of NaIO4 or NaClO2 but not in the presence of NADPH or NADH.  相似文献   

10.
Cytochrome P-450 (P-450C21), purified from bovine adrenocortical microsomes, was incorporated into the single bilayer liposomes of egg yolk phosphatidylcholine by gel filtration, using a high pressure liquid chromatography system. Interaction of the steroid substrates, 17 alpha-hydroxyprogesterone and progesterone, with P-450C21 in the liposomes was studied in the equilibrium state by measuring substrate-induced spectral change. The apparent dissociation constant of the P-450C21-substrate complex increased with phosphatidylcholine concentration in the system, showing the substrate to be partitioned between the aqueous and lipid phases. Partition coefficients, determined by equilibrium dialysis and the Hummel-Dreyer method, were 3500 for progesterone and 2000 for 17 alpha-hydroxyprogesterone at 25 degrees C. The binding process of the substrates to P-450C21 in the liposomes and their dissociation were measured by a stopped flow method. The apparent rate of substrate binding to P-450C21 in the liposomes was not effected by substrate partitioning, indicating partitioning to occur much more quickly than substrate binding to P-450C21. Absorption changes observed in the stopped flow experiments were analyzed at a rapid equilibrium of partitioning. Based on these results, the substrate binding site of P-450C21 was concluded to face the lipid phase of the liposome membranes.  相似文献   

11.
E Rouer  E Le Provost  J P Leroux 《Biochimie》1983,65(11-12):679-683
Phenobarbital treatment and streptozotocin-diabetes both increase, in mouse and rat microsomes, a benzphetamine-N-demethylase activity which can be inhibited by a specific antibody raised against purified rat phenobarbital-induced cytochrome P-450. However, similar studies performed on cytochrome P-450 A and B fractions separated by DEAE-cellulose chromatography, clearly proved that streptozotocin-diabetes promotes in mice the synthesis of two new species of cytochrome P-450 and that the streptozotocin diabetes-induced forms are different in mouse and rat. No such modifications were observed in the mixed-function oxidase system of congenitally diabetic mice.  相似文献   

12.
Phenobarbital treatment and streptozotocin-diabetes both increase, in mouse and rat microsomes, a benzphetamine-N-demethylase activity wich can be inhibited by a specific antibody raised against purified rat phenobarbital-induced cytochrome P-450. However, similar studies performed on cytochrome P-450 A and B fractions separated by DEAE-cellulose chromatography, clearly proved that streptozotocin-diabetes promotes in mice the synthesis of two new species of cytochrome P-450 and that the streptozotocin diabetes-induced forms are different in mouse and rat. No such modifications were observed in the mixed-function oxidase system of congenitally diabetic mice.  相似文献   

13.
The NADPH-cytochrome c (P-450) reductase induced in the filamentous fungus Rhizopus nigricans as a component of 11 alpha-hydroxylase of progesterone was resolved by DEAE-cellulose chromatography into two components. One of the components is an iron-sulfur protein (rhizoporedoxin), whereas the other component is a protein with reductase activity dependent on NADPH (rhizoporedoxin reductase). As shown in the reconstitution assay, the NADPH-cytochrome c (P-450) reductase activity was restored upon combination of these two proteins.  相似文献   

14.
Monoclonal antibodies developed to cytochrome P-450 1, some of which react with proteins in addition to P-450 1, were used to investigate the differential expression of P-450 1 dependent 21-hydroxylase activity in renal tissue of rabbits exhibiting differences in hepatic 21-hydroxylase activity. Using immunohistochemical techniques, the monoclonal antibodies, 2F5 and 3C3, localized protein in the S2 and S3 segments of the proximal tubule in the renal cortex. These two monoclonal antibodies, 2F5 and 3C3, reacted with a kidney protein that migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a relative electrophoretic mobility that did not correspond to known rabbit hepatic isozymes and was termed P-450 K. Antibodies specific for P-450 1 and 3b, 1F11 and 8-27, respectively, produced no staining in kidney. The protein recognized by the 2F5 and 3C3 antibodies is immunologically distinct from cytochrome P-450s 1, 2, and 3b. The rate of 21-hydroxylation of progesterone was shown to be approximately 100-fold less in kidney than liver microsomes where this pathway is largely catalyzed by P-450 1. The activity of the kidney microsomes was not inhibited by antibodies directed to P-450 1. In addition, the variation observed for the 21-hydroxylase activity in the hepatic microsomal fraction of outbred New Zealand white rabbits was not evident in kidney microsomes from these same animals. The 2F5 antibody was found, however, to be inhibitory (about 50%) of the 11-hydroxylation of lauric acid in kidney microsomes. This suggests that P-450 K participates in lauric acid 11-hydroxylase activity. The treatment of rabbits with phenobarbital, but not 2,3,7,8-tetrachlorodibenzo-p-dioxin, was found to induce the levels of P-450 K.  相似文献   

15.
Rat hepatic cytochrome P-450 form 3 (testosterone 7 alpha-hydroxylase; P-450 gene IIA1) and P-450 form RLM2 (testosterone 15 alpha-hydroxylase; P-450 gene IIA2) are 88% identical in primary structure, yet they hydroxylate testosterone with distinct and apparently unrelated regioselectivities. In this study, androstenedione and progesterone were used to assess the regioselectivity and stereospecificity of these two P-450 enzymes towards other steroid substrates. Although P-450 RLM2 exhibited low 7 alpha-hydroxylase activity with testosterone or progesterone as substrate (turnover number less than or equal to 1-2 nmol of metabolite/min per nmol of P-450), it did catalyse androstenedione 7 alpha-hydroxylation at a high rate (21 min-1) which exceeded that of P-450 3 (7 min-1). However, whereas P-450 3 exhibited a high specificity for hydroxylation of these steroids at the 7 alpha position (95-97% of total activity), P-450 RLM2 actively metabolized these compounds at four or more major sites including the nearby C-15 position, which dominated in the case of testosterone and progesterone. The observation that androstenedione is actively 7 alpha-hydroxylated by purified P-450 RLM2 suggested that this P-450 enzyme might make significant contributions to microsomal androstenedione 7 alpha-hydroxylation, an activity that was previously reported to be associated with immunoreactive P-450 3. Antibody inhibition experiments were therefore carried out in liver microsomes using polyclonal anti-(P-450 3) antibodies which cross-react with P-450 RLM2, and using a monoclonal antibody that is reactive with and inhibitory towards P-450 3 but not P-450 RLM2. P-450 3 was thus shown to catalyse only around 35% of the total androstenedione 7 alpha-hydroxylase activity in uninduced adult male rat liver microsomes, with the balance attributed to P-450 RLM2. The P-450-3-dependent 7 alpha-hydroxylase activity was increased to approximately 65% of the total in phenobarbital-induced adult male microsomes, and to greater than 90% of the total in untreated adult female rat liver microsomes. These observations are consistent with the inducibility of P-450 3 by phenobarbital and with the absence of P-450 RLM2 from adult female rat liver respectively. These findings establish that P-450 RLM2 and P-450 3 can both contribute significantly to microsomal androstenedione 7 alpha-hydroxylation, thus demonstrating that the 7 alpha-hydroxylation of this androgen does not serve as a specific catalytic monitor for microsomal P-450 3.  相似文献   

16.
Multiple forms of cytochrome P-450 in liver microsomes of untreated male and female rats could be divided into several fractions by the use of ω-amino-n-octyl Seph. 4B and DE-52 columns. Male cytochrome P-450 fractions (I-b - I-e) differed from female fractions (I-b - I-e) with respect to absorption peaks in carbon monoxide difference spectra and 7-prop-oxycoumarin O-depropylation activities. Although male and female I-a fractions showed quite similar protein bands on SDS-polyacrylamide gel electrophoresis, some protein bands in other male fractions (I-b - I-e) were absent in corresponding female fractions. Immunochemical examinations using immunoglobulin G raised to cytochrome P-450 purified from untreated male rats also showed that liver microsomes from male and female rats contain different forms of cytochrome P-450. Based on these results, we propose that sex-related differences of drug metabolizing activities in liver microsomes are caused by multiple forms of cytochrome P-450.  相似文献   

17.
The effect of Troleandomycin (TAO) and pregnenolone 16 alpha-carbonitrile (PCN) on the hepatic microsomal progesterone metabolism in the rat is evaluated. Over thirteen hydroxylated progesterone derivatives are detected, including the novel 6 beta, 21-, 6 beta, 16 alpha-, 6 beta, 16 beta- and 2,21-dihydroxy derivatives, suggesting the induction of several cytochrome P-450 isozymes. PCN treatment results overall in an augmented production of progesterone metabolites whereas TAO treatment both induces and represses specific hydroxylase activities. Progesterone metabolism with purified isozymes isolated from liver microsomes from TAO and PCN treated rats differs significantly from that observed with intact microsomes, reflecting the complexity of the induction pattern of the cytochrome P-450 III family.  相似文献   

18.
Conversion of progesterone to 17 alpha-hydroxyprogesterone plus androstenedione (17 alpha-hydroxylation) and to androstadienone (delta 16 synthetase activity) by microsomes from neonatal pig testis, were both inhibited by antibodies raised against homogeneous cytochrome P-450 C21 side-chain cleavage. Inhibition of the two activities showed the same relationship to the concentration of antibody added. Analogous results were obtained with pregnenolone as substrate. In a reconstituted enzyme system consisting of the homogeneous cytochrome P-450 C21 side-chain cleavage enzyme, P-450 reductase and NADPH, addition of cytochrome b5 resulted in the synthesis of the corresponding delta 16-C19-steroid from progesterone (androstadienone) and pregnenolone (androstadienol). The effect of cytochrome b5 was concentration-dependent and prevented by anti-cytochrome b5. It is concluded that the cytochrome P-450 C21 side-chain cleavage enzyme from pig testicular microsomes is also capable of synthesizing delta 16-C19-steroids and is, therefore, likely to be responsible for the large amounts of the pherormone androstadienone produced by male pigs.  相似文献   

19.
Seven cytochromes P-450 (A, B, C, D, E1, E2 and F) were isolated from hepatic microsomes of phenobarbital-induced rats by a modification of the procedure of Guengerich and Martin [Arch. Biochem. Biophys. (1980) 205, 365-379]. The modification consisted of replacing DEAE-cellulose column by two DEAE-Sepharose CL-6B columns connected in tandem, changing the elution scheme and monitoring the resulting fractions by high-pressure liquid chromatography (HPLC). Cytochrome P-450 forms D, E1, E2 and F having molecular masses of 52.5 kDa, 52.5 kDa, 53.3 kDa and 53.2 kDa, respectively were resolved from the major form of cytochrome P-450 'peak B2' of Guengerich and Martin (above reference). These four cytochromes P-450 were immunologically identical by Ouchterlony double-diffusion analysis. Slight but significant differences were evident in the partial peptide digest maps of these four cytochromes P-450 and catalytic properties of these four forms, though qualitatively similar, demonstrated distinct quantitative differences. Furthermore, HPLC retention times of these four cytochrome P-450s were quite different. Cytochrome P-450 forms A, B and C were distinctly different from each other and from the forms D, E1, E2 and F in the following respects: partial peptide digest maps, catalytic activities, and HPLC retention times. The present results show that cytochromes P-450 considered homogeneous by sodium dodecyl sulfate/polyacrylamide gel electrophoresis may be heterogeneous and contain multiple forms of cytochromes P-450 with different net charges but similar molecular-masses. These studies also demonstrate the capability of HPLC in providing a simple and effective tool for monitoring the separation of cytochromes P-450 showing charge heterogeneity.  相似文献   

20.
Aromatase cytochrome P-450 (P-450AROM) was partially purified from human placental microsomes by hydrophobic affinity chromatography using Phenyl-Sepharose and ion-exchange chromatography on DEAE-cellulose. The resulting preparation had a specific activity of 2 nmol/mg protein with respect to cytochrome P-450 content and displayed a type I difference spectrum upon addition of the substrate androstenedione. When the cytochrome P-450-enriched fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained with Coomassie blue, there was an enrichment of two proteins having apparent molecular weights of 50,000 and 55,000. The bands containing these proteins were removed from unstained polyacrylamide gels and injected separately or together into three rabbits. An aliquot of the serum or an immunoglobulin (IgG) fraction prepared from the serum of the rabbit injected with the 55-kDa band or with both the 50- and 55-kDa bands inhibited aromatase activity of human placental microsomes by 80%; this IgG had no effect on 17 alpha-hydroxylase or 21-hydroxylase activities of human fetal adrenal microsomes. In contrast, the serum of the rabbit injected with the 50-kDa band had little capacity to inhibit placental aromatase activity. By immunoblot analysis, it was found that the IgG from the serum of the rabbit immunized with the 55-kDa protein bound specifically to a protein of 55 kDa in human placental microsomes. Monoclonal antibodies were prepared from a hybridoma cell line derived from the spleen cells of mice immunized against the 55-kDa protein. The monoclonal IgG was covalently linked to a Sepharose 4B column and was used for immunoaffinity chromatography of cytochrome P-450AROM. The finding that cytochrome P-450 and the 55-kDa protein were selectively retained by the affinity column and eluted with NaCl (2 M) and glycine (0.2 M, pH 3.0) and that this fraction contained aromatase activity upon reconstitution with purified NADPH-cytochrome P-450 reductase and phospholipid, is indicative that the 55-kDa protein is indeed cytochrome P-450AROM. These findings are also indicative that both the monoclonal and polyclonal IgGs are specific for human cytochrome P-450AROM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号