首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this 27 month study were to document the positional behaviors used by lowland gorillas (Gorilla gorilla gorilla) in the Central African Republic and to compare the effects of body size dimorphism on the use of arboreal substrates. During this study, despite their great size, all gorillas used trees regularly. Predictions concerning the relationship of body size to arboreal behavior were generally upheld. Small branch and suspensory activities were rare for silverbacks. Females used smaller and multiple substrates and suspensory postures more frequently than males. Although females foraged in the periphery of trees, males stayed close to the cores and rarely used terminal branches. In addition to body size, this study found that party size, social rank, and tree structure all influence an animal's substrate choice and subsequent positional activities. Lone males typically remained in the cores of trees where substrates are large. Group males may have been forced to use all parts of trees because others were present. Lone males used small crown trees which provided easy access to terminal branch foods. Males and females foraging together used larger trees (containing more feeding sites) than single sex groups. Female positional behavior may have been affected by the presence of males. When apart from males, females used the cores of trees and larger substrates more than when foraging with males. As habitat and social context both influence substrate use, they should be considered essential components of body-sized based interpretations of the behavior of fossil or extant species. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Bwindi Impenetrable National Park, Uganda, is a small protected area (331 km2) within which there is large climatic and altitudinal variation. Therefore we compared habitat types and forest composition between two locations to investigate differences that may influence ecological conditions for large mammals, including endangered mountain gorillas. We demonstrate that there is considerable intersite variation in habitat types and spatial and temporal availability of vegetation resources of which the most apparent are the differences in species composition of plants and fruit availability. Buhoma (the lower altitude site) has a greater diversity of plant species and higher tree and shrub densities, yet has a much lower density of herbaceous vegetation eaten by gorillas compared with Ruhija. Fruit availability is significantly higher throughout the year in Buhoma compared with Ruhija. Both sites exhibit seasonal variation in fruit availability although they do not follow the same seasonal pattern, perhaps because of inherent asynchronous phenological differences amongst individual tree species. The results of this study are important because distribution and abundance of both terrestrial herbaceous vegetation and fruit resources are believed to influence aspects of feeding ecology for large mammals.  相似文献   

3.
We describe the resource availability and diet of western lowland gorillas (Gorilla gorilla gorilla) from a new study site in the Central African Republic and Republic of Congo based on 3 years of study. The results, based on 715 fecal samples and 617 days of feeding trails, were similar to those reported from three other sites, in spite of differences in herb and fruit availability. Staple foods (consumed year-round) included high-quality herbs (Haumania), swamp herbs (when present), and a minimal diversity of fruit. A variety of fruits (average of 3.5 species per day and 10 per month) were selectively consumed; gorillas ignored some common fruits and incorporated rare fruits to a degree higher than predicted based on availability. During periods of fruit abundance, fruit constituted most of the diet. When succulent fruits were unavailable, gorillas used low-quality herbs (i.e., low-protein), bark, and more fibrous fruits as fallback foods. Fibrous fruit species, such as Duboscia macrocarpa and Klainedoxa gabonensis, were particularly important to gorillas at Mondika and other sites as fallbacks. The densities of these two species are similar across sites for which data are available, in spite of major differences in forest structure, suggesting they may be key species in determining gorilla density. No sex difference in diet was detected. Such little variation in western lowland gorilla diet across sites and between sexes was unexpected and may partly reflect limitations of indirect sampling.  相似文献   

4.
Though insectivory by large-bodied gorillas may be unexpected, researchers have reported it in all populations of gorillas studied to date. Our study of 2 well monitored groups of western gorillas (Gorilla gorilla gorilla) at Bai Hokou in Dzanga-Ndoki National Park, Central African Republic provides information on frequency and variability of termite consumption (the most commonly eaten insect) as well as some of the first direct observations of the behavior. Pooled data from both groups indicate termite feeding on 34% and 83% of days, through fecal analysis and feeding trails, respectively. Direct observations revealed that termite feeding occurred on 91% of the days for 1 group, in which the silverback fed on termites during 13% of all feeding scans, making termites the most commonly observed food item. The group that had a higher density of termite mounds in its home range consumed termites more frequently than the other group did. A higher proportion of fecal samples from the silverbacks contained termite remains than the ones from adult females and juveniles. Termite consumption was lower during the dry season, but it does not correlate with rainfall, measures of fruit availability, or fruit consumption. Displacements at termite mounds occurred more than expected, indicating that they are a patchy, sought-after food resource. Gorillas did not use tools to extract termites, but they used 2 different techniques to remove them from the cells. Though culture or social traditions may cause the variation in termite consumption across sites, further investigation of termite availability and consumption is necessary to rule out ecological and methodological explanations for observed variations.  相似文献   

5.
Determining the composition of primate diet and identifying factors that affect food choice are important in understanding habitat requirements of primates and designing conservation plans. We studied the diet of Cross River gorillas (Gorilla gorilla diehli) in relation to availability of food resources, in a semideciduous lowland forest site (Mawambi Hills) in Cameroon, from November 2009 to September 2011. Based on 109 d of feeding trail data, 203 fecal samples, and 22 mo of phenological monitoring, we determined that gorillas consumed a total of 242 food items, including 240 plant items from 186 species and 55 taxonomic families. Mawambi gorillas diversified fruit consumption when fruit availability increased, and consumed more fibrous foods (pith, leaf, bark) during times of fruit scarcity, consistent with results of other gorilla studies. However, fruit availability was not related to rainfall, and the period of fruit scarcity was more pronounced at Mawambi than at other gorilla study sites, due to a single long dry season and extreme rainfall at the end of the rainy season that delayed fruit production and ripening. We found no relationship between the daily path length of the gorillas and fruit consumption. We found feeding habits of Mawambi gorillas to be notably similar to those of a population of Cross River gorillas at Afi Mountain, Nigeria, although subtle differences existed, possibly due to site-specific differences in forest composition and altitude. At both sites the liana Landolphia spp. was the single most important food species: the leaves are a staple and the fruits are consumed during periods of fruit scarcity. Snails and maggots were consumed but we observed no further faunivory. We suggest that tree leaves and lianas are important fallback food sources in the gorilla diet in seasonally dry forests.  相似文献   

6.
Our study extends quantitative analyses of insect-eating by gorillas (Gorilla gorilla gorilla) to Cameroon. During a 2-mo period (May–June 2001), we recorded and analyzed feeding traces on plants and insects and in gorilla feces. We found 180 feeding traces, 17% of which involved insectivory. Seventy-eight percent of the fecal samples (n = 36) contained insects. Ants were found in 61% of the samples, termites in 39%, while 56% of the samples contained remains of other insects. We added 14 new species to the known insect diet of western lowland gorillas. Overall, social insects are predominant. The choice of prey by the Ntonga gorillas gives new clues for the existence of cross-cultural differences among gorilla populations. A comparison of the overall frequency of insectivory with those at other sites in Central Africa indicate a possible effect of forest disturbance on the insectivorous behavior of gorillas. The study suggests the existence of temporal variation in ant- and termite-eating by gorillas.  相似文献   

7.
Traditionally, gorillas were classified as folivores, yet 15 years of data on western lowland gorillas (Gorilla gorilla gorilla) show their diet to contain large quantities of foliage and fruit, and to vary both seasonally and annually. The consumption of fruit by gorillas at Bai Hokou, Central African Republic, is correlated with rainfall and ripe fruit availability (Remis, 1997a). We investigated the nutritional and chemical content of gorilla foods consumed at Bai Hokou during two seasons of fruit scarcity as measured by phenological observations and compared our findings with the nutrient content of gorilla foods at other African sites. We conclude that during lean times, Bai Hokou gorillas consumed fruits with higher levels of fiber and secondary compounds than those of other populations of western lowland or mountain gorillas. Conversely, leaves consumed by Bai Hokou gorillas were relatively low in fiber and tannins. Bai Hokou gorillas appeared to meet their nutritional needs by eating a combination of fruit and foliage. They ate fruits comparatively high in secondary compounds and fiber when necessary. While gorillas are selective feeders, wherever and whenever preferred foods are scarce, their large body size and digestive anatomy enable them to consume and process a broader repertoire of foods than smaller bodied-apes.  相似文献   

8.
The most important environmental factor explaining interspecies variation in ecology and sociality of the great apes is likely to be variation in resource availability. Relatively little is known about the activity patterns of western lowland gorillas (Gorilla gorilla gorilla), which inhabit a dramatically different environment from the well‐studied mountain gorillas (G. beringei beringei). This study aims to provide a detailed quantification of western lowland gorillas' activity budgets using direct observations on one habituated group in Bai Hokou, Central African Republic. We examined how activity patterns of both sexes are shaped by seasonal frugivory. Activity was recorded with 5‐min instantaneous sampling between December 2004 and December 2005. During the high‐frugivory period the gorillas spent less time feeding and more time traveling than during the low‐frugivory period. The silverback spent less time feeding but more time resting than both females and immatures, which likely results from a combination of social and physiological factors. When compared with mountain gorillas, western lowland gorillas spend more time feeding (67 vs. 55%) and traveling (12 vs. 6.5%), but less time resting (21 vs. 34%) and engaging in social/other activities (0.5 vs. 3.6%). This disparity in activity budgets of western lowland gorillas and mountain gorillas may be explained by the more frugivorous diet and the greater dispersion of food resources experienced by western lowland gorillas. Like other apes, western lowland gorillas change their activity patterns in response to changes in the diet. Am. J. Primatol. 71:91–100, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Knuckle-walking is a pattern of digitigrade locomotion unique to African apes among Primates. Only chimpanzees and gorillas are specially adapted for supporting weight on the dorsal aspects of middle phalanges of flexed hand digits II–V. When forced to the ground, most orangutans assume one of a variety of flexed hand postures, but they cannot knuckle-walk. Some orangutans place their hands in palmigrade postures which are impossible to African apes. The knuckle-walking hands and plantigrade feet of African apes are both morphologically and adaptively distinct from those of Pongo, their nearest relative among extant apes. These features are associated with a common adaptive shift to terrestrial locomotion and support placing chimpanzees and gorillas in the same genus Pan. It is further suggested than Pan comprises the subgenera (a) Pan, including P. troglodytes and pygmy chimpanzees, and (b) Gorilla, including mountain and lowland populations of P. gorilla. African apes probably diverged from ancestral pongids that were specially adapted for distributing their weight in terminal branches of the forest canopy. Early adjustments to terrestrial locomotion may have involved fist-walking which later evolved into knuckle-walking. Orangutans continued to adapt to feeding and locomotion in the forest canopy and their hands and feet became highly specialized for four-digit prehension. Although chimpanzees retained arboreal feeding and nesting habits, they moved from tree to tree by terrestrial routes and became less restricted in habitat. While adapting to a diet of ground plants gorillas increased in size to the point that arboreal nesting is less frequent among them than among chimpanzees and orangutans. Early hominids probably diverged from pongids that had not developed prospective adaptations to knuckle-walking, and therefore did not evolve through a knuckle-walking stage. Initial adjustments to terrestrial quadrupedal locomotion and resting stance probably included palmigrade hand posturing. Their thumbs may have been already well developed as an adaptation for grasping during arboreal climbing. A combination of selection pressures for efficient terrestrial locomotor support and for object manipulation further advanced early hominid hands toward modern human configuration.  相似文献   

10.
We recorded 310 fresh chimpanzee night nests at 72 nest sites to determine their choice of tree and site for nesting vis-à-vis the effects of sympatric gorillas. Chimpanzees did not use trees for nesting according to their abundance, but instead tended to nest in fruit trees that they used as food sources. Nesting patterns of chimpanzees may vary with nesting group size, the type of vegetation, and fruit species eaten or not eaten by gorillas. When chimpanzees lodged as a small group in the secondary forest, they nested more frequently in trees bearing ripe fruits eaten only by themselves than in those with fruit eaten also by gorillas. When they lodged as a large group in the primary forest, they nested more frequently in trees bearing ripe fruits eaten by both apes. Nest group size is positively correlated with the availability of preferred ripe fruits in secondary forest. These findings not only reflect the larger foraging groups at the larger fruiting trees but also suggest that chimpanzees may have tended to occupy fruiting trees effectively by nesting in them and by forming large nest groups when the fruits attracted gorillas. Competition over fruits between gorillas and chimpanzees, due to their low productivity in the montane forest of Kahuzi, may have promoted the chimpanzee tactics.  相似文献   

11.
Recent findings on the strong preference of gorillas for fruits and the large dietary overlap between sympatric gorillas and chimpanzees has led to a debate over the folivorous/frugivorous dichotomy and resource partitioning. To add insight to these arguments, we analyze the diets of sympatric gorillas and chimpanzees inhabiting the montane forest of Kahuzi-Biega National Park (DRC) using a new definition of fallback foods (Marshall and Wrangham: Int J Primatol 28 [2007] 1219–1235). We determined the preferred fruits of Kahuzi chimpanzees and gorillas from direct feeding observations and fecal analyses conducted over an 8-year period. Although there was extensive overlap in the preferred fruits of these two species, gorillas tended to consume fewer fruits with prolonged availability while chimpanzees consumed fruits with large seasonal fluctuations. Fig fruit was defined as a preferred food of chimpanzees, although it may also play a role as the staple fallback food. Animal foods, such as honey bees and ants, appear to constitute filler fallback foods of chimpanzees. Tool use allows chimpanzees to obtain such high-quality fallback foods during periods of fruit scarcity. Among filler fallback foods, terrestrial herbs may enable chimpanzees to live in small home ranges in the montane forest, whereas the availability of animal foods may permit them to expand their home range in arid areas. Staple fallback foods including barks enable gorillas to form cohesive groups with similar home range across habitats irrespective of fruit abundance. These differences in fallback strategies seem to have shaped different social features between sympatric gorillas and chimpanzees. Am J Phys Anthropol 140:739–750, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

12.
In this paper we describe bed (nest) and bed-site reuse by western lowland gorillas (Gorilla g. gorilla) in Moukalaba-Doudou National Park, south-eastern Gabon. During an eight-month study 44 bed sites and 506 beds were found. Among these, 38.6% of bed sites and 4.1% of beds were reused. We analyzed the monthly frequency of bed-site reuse in relation to rainfall, fruit abundance, and fruit consumption by the gorillas. The different frequency of bed-site reuse in the rainy and dry seasons was not significant. More bed-site reuse was observed during the fruiting season than during the non-fruiting season. Results from fecal analysis suggested that gorillas ate more fruit in the fruiting season than in the non-fruiting season. The frugivorous diet of western gorillas may possibly cause gorillas to stay in some areas and, consequently, reuse their bed sites. Reuse of bed sites by gorillas suggests their frequent return to an area where preferred fruit is readily available. A higher percentage of arboreal beds may also affect bed-site reuse, because of the shortage of bed material.  相似文献   

13.
Dietary overlap of sympatric apes is complex and understudied, but its examination is essential to further our understanding of species distribution, abundance, and community ecology. Over 3 yr we studied food availability and dietary composition of central chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon. We predicted that living in a habitat dominated by mature forest with sparse terrestrial herbaceous vegetation would lead to an increase in frugivory by gorillas, resulting in increased dietary overlap between the 2 ape species vs. other sites, but that chimpanzees would remain more frugivorous than gorillas. Through fecal analysis we measured overlap in fruit consumption between the 2 species on a bimonthly basis using the Renkonens method. Mean overlap was 27.5% but varied greatly seasonally, ranging between 0.3% and 69%, indicating that when examined on a finer scale, the degree of overlap appears much lower than at other study sites. In contrast to studies elsewhere, there was not a positive correlation between rainfall and fruit availability in Loango, and the long dry season was a period of high fruit production. As observed elsewhere, we found a positive correlation between fruit consumption and fruit availability for both chimpanzees and gorillas and we found that chimpanzees were more frugivorous than gorillas. A very low availability of herbs did not lead to increased frugivory by gorillas nor increased overlap between the 2 ape species vs. other field sites. We conclude that forest composition, fruit availability, and dietary variability of sympatric species can vary greatly between locations, and that chimpanzees and gorillas can adapt to primary forest with little undergrowth, where they concentrate their diet on fruit and leaves.  相似文献   

14.
We examined the influence of ecological (diet, swamp use, and rainfall) and social (intergroup interaction rate) factors on ranging behavior in one group of western gorillas (Gorilla gorilla gorilla) during a 16-month study. Relative to mountain gorillas, western gorillas live in habitats with reduced herb densities, more readily available fruit (from seasonal and rare fruit trees), and, at some sites, localized large open clearings (swamps and "bais"). Ranging behavior reflects these ecological differences. The daily path length (DPL) of western gorillas was longer (mean=2,014 m) than that of mountain gorillas, and was largely related to fruit acquisition. Swamp use occurred frequently (27% of days) and incurred a 50% increase in DPL, and 77% of the variation in monthly frequency of swamp use was explained by ripe fruit availability within the swamp, and not by the absence of resources outside the swamp. The annual home-range size was 15.4 km2. The western gorilla group foraged in larger areas each month, and reused them more frequently and consistently through time compared to mountain gorillas. In contrast to mountain gorillas, intergroup encounters occurred at least four times more frequently, were usually calm rather than aggressive, and had no consistent effect on DPL or monthly range size for one group of western gorillas. High genetic relatedness among at least some neighboring males [Bradley et al., Current Biology, in press] may help to explain these results, and raises intriguing questions about western gorilla social relationships.  相似文献   

15.
Increased interest in the behavioral effects of captive environments and advances in zoo design have resulted in a proliferation of “naturalistic” animal habitats. Although scientists have demonstrated that such exhibits have some positive effects on behavior, very little is known about the complex relationships between these specialized environments and behavior. This study sought to determine preferences for structural environmental features, such as slope and trees, exhibited by captive lowland gorillas (Gorilla gorilla gorilla). An average of 496 location scans were collected on each of 23 gorillas, housed in 6 groups. The results indicate that enclosure usage was significantly associated with the features of slope, nearness to holding facility, and presence of environmental components additional to substrate (e.g., tree or rock). In particular, areas with flat ground that were near the holding building and that included at least one component additional to substrate were preferred by all animals. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The distribution of resources is a crucial determinant of animals' space use (e.g., daily travel distance, monthly home range size, and revisitation patterns). We examined how variation in ecological parameters affected variability in space use patterns of western lowland gorillas, Gorilla gorilla gorilla. They are an interesting species for investigating this topic because key components of their diet are nonfruit items (herbaceous vegetation and tree leaves) that occur at low density and are sparsely distributed, and fruits, which show high spatiotemporal variation in availability. We estimated how availability of nonfruit foods and fruit, frugivory (proportion of feeding time consuming fruit), and swamps in areas used by the gorillas influenced daily travel distance, monthly home range size, and revisit frequency to grid cells in the home range of one habituated gorilla group in Loango National Park, Gabon. Using location data from 2015 to 2018, we found that the gorillas decreased their daily travel distance as both the density of nonfruit foods and the proportion of swamps in areas used increased. Daily travel distances were shorter when both frugivory and availability of fruit were higher, yet, daily travel distances were longer when availability of fruit was low but frugivory was still high. Furthermore, monthly home range size increased as frugivory increased and monthly revisit frequencies to an area increased as fruit availability of an area increased. In conclusion, the availability of both nonfruit and fruit influenced the gorillas' space use patterns. Gorillas decreased foraging effort when food availability was high but were willing to incur increasing foraging costs to feed on fruit when availability was low. This study highlights how animals have to adjust their space use with changing resource availability and it emphasizes the value of examining multiple parameters of space use.  相似文献   

17.
In this paper, I describe the food-dropping behavior of western lowland gorillas observed in Moukalaba-Doudou National Park, Gabon. I collected observational data of gorillas eating in trees, and recorded whether any individuals were positioned under the same tree. In 22 of the 24 cases of individuals being present under a tree, I observed the gorilla in a tree dropping food to the individual below. In most cases, the recipient was a silverback or an elder half-sibling of the dropper. The dropper’s elder full-sibling was never a recipient. The food-dropping behavior of Moukalaba western lowland gorillas is likely due to a combination of factors: their frugivory, arboreality, large body size, and the scarcity of terrestrial herbs. It is difficult for multiple gorillas to simultaneously feed in the same tree. Under such limitations, younger gorillas face difficulties in defending their feeding patches from older individuals. Nearly 90 % of the recipients were older than the food droppers. Furthermore, food droppers were significantly younger than non-food droppers who simultaneously fed on the same tree, and most-food recipients were significantly older than least-food recipients on the ground. Food dropping may, therefore, be a tactic employed by younger gorillas to defend a feeding site from older individuals. This study suggests that food dropping may reduce feeding contest competition in a gorilla group in Moukalaba. This is a preliminary study that indicates that food dropping may be intentionally used as a way to reduce feeding competition; nevertheless, further studies are needed.  相似文献   

18.
I used a zoological park setting to address food preferences among gorillas (Gorilla gorilla gorill) and chimpanzees (Pan troglodytes). Gorillas and chimpanzees are different sizes, and consequently, have been traditionally viewed as ecologically distinct. Sympatric western gorillas and chimpanzees have proved difficult to study in the wild. Limited field data have provided conflicting information about whether gorillas are fundamentally different from chimpanzees in diet and behavior. Fruit eating shapes the behavior of most apes, but it is unclear whether the large-bodied gorillas are an exception to this rule, specifically whether they are less selective and more opportunistic fruit eaters than chimpanzees are. My research provides experimental observational data to complement field data and to better characterize the diets and food preferences of the African apes. During laboratory research at the San Francisco Zoological Gardens, I examined individual and specific differences in food preferences of captive gorillas and chimpanzees via experimental paired-choice food trials with foods that varied in nutritional content. During the study, I offered 2500 paired-food choices to 6 individual gorillas and 2000 additional pairs to them as a group. I also proffered 600 food pairs to 4 individual chimpanzees. Despite expectations of the implications of body size differences for diet, gorillas and chimpanzees exhibited similar food preferences. Both species preferred foods high in non-starch sugars and sugar-to-fiber ratios, and low in total dietary fiber. Neither species avoided foods containing tannins. These data support other suggestions of African apes sharing a frugivorous adaptation.  相似文献   

19.
The geographical distribution of genetic variation within western lowland gorillas (Gorilla gorilla gorilla) was examined to clarify the population genetic structure and recent evolutionary history of this group. DNA was amplified from shed hair collected from sites across the range of the three traditionally recognized gorilla subspecies: western lowland (G. g. gorilla), eastern lowland (G. g. graueri) and mountain (G. g. beringei) gorillas. Nucleotide sequence variation was examined in the first hypervariable domain of the mitochondrial control region and was much higher in western lowland gorillas than in either of the other two subspecies. In addition to recapitulating the major evolutionary split between eastern and western lowland gorillas, phylogenetic analysis indicates a phylogeographical division within western lowland gorillas, one haplogroup comprising gorilla populations from eastern Nigeria through to southeast Cameroon and a second comprising all other western lowland gorillas. Within this second haplogroup, haplotypes appear to be partitioned geographically into three subgroups: (i) Equatorial Guinea, (ii) Central African Republic, and (iii) Gabon and adjacent Congo. There is also evidence of limited haplotype admixture in northeastern Gabon and southeast Cameroon. The phylogeographical patterns are broadly consistent with those predicted by current Pleistocene refuge hypotheses for the region and suggest that historical events have played an important role in shaping the population structure of this subspecies.  相似文献   

20.
Testing predictions of socioecological models, specifically that the types of feeding competition and social relationships female primates exhibit are strongly influenced by the distribution, density, and quality of food resources, requires studies of closely related populations of subjects living under different ecological conditions. I examined feeding competition and the resulting female social relationships in mountain gorillas (Gorilla beringei beringei) of Bwindi Impenetrable National Park, Uganda, which has ecological conditions distinctive from those where other gorilla populations live. I observed 1 group of gorillas for 29 mo to examine the proportion of time spent foraging on fruit, the relationship between patch size and occupancy patterns of fruit trees, and agonistic interactions. Patch occupancy time while foraging in fruit trees decreased with increasing number of gorillas in a tree and decreasing tree size, suggesting that fruit trees represent limiting patches and can lead to intragroup scramble competition. Gorillas exhibited higher levels of aggression while feeding on fruit versus other food resources, which indicates intragroup contest competition. I observed a linear dominance hierarchy with no bidirectionality via displacements, and a similar hierarchy via aggression, though a notable proportion of the dyads contained 2-way interactions. However, most aggression was of low intensity (vocalizations) and the recipient typically ignored it. Despite differences in ecological conditions and diet between the Virunga Volcanoes and Bwindi, agonistic relationships among females are largely similar in the 2 populations and are best characterized as dispersal individualistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号