首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marginal zone B cells (MZB) participate in the early immune response to several pathogens. In this study, we show that in μMT mice infected with Leishmania donovani, CD8 T cells displayed a greater cytotoxic potential and generated more effector memory cells compared with infected wild type mice. The frequency of parasite-specific, IFN-γ(+) CD4 T cells was also increased in μMT mice. B cells were able to capture parasites, which was associated with upregulation of surface IgM and MyD88-dependent IL-10 production. Moreover, MZB presented parasite Ags to CD4 T cells in vitro. Depletion of MZB also enhanced T cell responses and led to a decrease in the parasite burden but did not alter the generation of effector memory T cells. Thus, MZB appear to suppress protective T cell responses during the early stages of L. donovani infection.  相似文献   

2.
The injection of mice with a goat or rabbit antibody to mouse IgD stimulates a large polyclonal IgG response, approximately 10% of which is specific for antigenic determinants on the anti-IgD antibody molecule. The large goat IgG (GIgG)-specific antibody response in mice injected with goat antibody to mouse IgD requires that GIgG-specific B cells undergo much greater clonal expansion than B cells specific for other Ag. One possible explanation for the greater clonal expansion of GIgG-specific B cells is that B cells that lack GIgG specificity can only be stimulated with GIgG-specific T help during the relatively short time that anti-IgD binds to, and is processed and presented by, these B cells before they cease to express membrane mIgD. In contrast, GIgG-specific B cells can continue to bind, process, and present GIgG through mIgM after they lose mIgD. To test the hypothesis that extended stimulation with Ag-specific T help is required to generate a specific antibody response, we determined time requirements for Ag-specific T cell help for the development of such a response. Mice were injected with rabbit antibody to mouse IgD plus one or more daily injections of FITC conjugated to a F(ab')2 fragment of rabbit IgG (FITC-(Fab')2), which has a short in vivo half-life, and IgG1 anti-FITC antibody production was analyzed. In this system, each additional injection of FITC-F(ab')2 extends the period during which FITC-specific B cells can process this Ag and present it to rabbit IgG-specific T cells. Each additional injection of FITC-F(ab')2 stimulated a several-fold increase in IgG1 anti-FITC antibody levels, and injections on 5 consecutive days were required to induce a maximal anti-FITC response. These observations provide evidence that sustained Ag-specific T cell help is required to stimulate the degree of B cell clonal expansion that characterizes a specific antibody response.  相似文献   

3.
Experiments were performed to test the hypothesis that prostaglandins are crucial to the ability of an antigen-specific T cell suppressor factor to deliver a suppressive signal. In the system employed, T suppressor cells release an antigen-specific factor (TsF) that suppresses the ability of effector cells to transfer contact sensitivity (CS) skin swelling responsiveness to adoptive recipients. Culture of TsF-producing cells in the presence of indomethacin caused production of an inactive TsF that could be reconstituted by incubation of this inactive factor with low concentrations of certain prostaglandins such as PGE2 or PGE1. Subsequently, nearly all the prostaglandins were removed by dialysis, and the reconstituted TsF then acted as an antigen-specific suppressor of CS effector cells. Neither the inactive factor nor prostaglandins were suppressive alone. Furthermore, the prostaglandins are crucial to the constitution of TNBSA-F, the non-antigen-binding subunit of the TsF that probably delivers the ultimate suppressive signal. These results provide a new type of antigen-specific role for prostaglandins in immunoregulation and indicate that simple, local, hormonal molecules in physiologic concentrations can have a crucial and long-lasting role in constituting the suppressive activity of antigen-specific regulatory macromolecules released by suppressor T cells.  相似文献   

4.
In earlier studies we showed that hapten-specific inducer T cell clones specifically induce B cells from immunized donors to secrete IgM antibodies. However, IgG responses were not observed, suggesting that an additional signal(s) was required. In this report, we show that an autoreactive T cell clone produces a factor(s) that collaborates with antigen-specific inducer T cells to promote specific IgG responses. This factor is not restricted by antigen or MHC determinants and promotes IgG production both in vivo and in vitro. These findings suggest that autoreactive cells may play an important role in the regulation of isotype expression.  相似文献   

5.
Antigen-specific and polyclonally induced T cell responses were analyzed in 10 HIV-infected individuals and in 14 controls by enumerating the numbers of tetanus toxoid (TT)-specific and phytohemagglutinin (PHA)-induced IFN-gamma-secreting cells (SC) and IL-4-SC using an enzyme-linked immunospot assay. Whereas the numbers of IFN-gamma-SC in HIV-infected patients were not different from those of the controls in response to an in vitro stimulation with PHA, they were significantly decreased in response to an in vitro stimulation with TT, both before and after a TT booster. Cell depletion experiments indicated that this difference was related to an impairment of CD4(+) T-cell-mediated TT-specific IFN-gamma secretion. Concerning IL-4, the numbers of both polyclonally induced IL-4-SC and TT-specific IL-4-SC were significantly lower in HIV-infected patients than in the controls. It is concluded that secretion of antigen-specific cytokines of both Th1 and Th2 types is depressed in HIV-infected patients.  相似文献   

6.
The complement system has been long regarded as an important effector of the innate immune response. Furthermore, complement contributes to various aspects of B and T cell immunity. Nevertheless, the role of complement in CD8(+) T cell antiviral responses has yet to be fully delineated. We examined the CD8(+) T cell response in influenza type A virus-infected mice treated with a peptide antagonist to C5aR to test the potential role of complement components in CD8(+) T cell responses. We show that both the frequency and absolute numbers of flu-specific CD8(+) T cells are greatly reduced in C5aR antagonist-treated mice compared with untreated mice. This reduction in flu-specific CD8(+) T cells is accompanied by attenuated antiviral cytolytic activity in the lungs. These results demonstrate that the binding of the C5a component of complement to the C5a receptor plays an important role in CD8(+) T cell responses.  相似文献   

7.
The number of virus-specific CD8 T cells increases substantially during an acute infection. Up to 90% of CD8 T cells are virus specific following lymphocytic choriomeningitis virus (LCMV) infection. In contrast, studies identifying virus-specific CD4 T cell epitopes have indicated that CD4 T cells often recognize a broader array of Ags than CD8 T cells, consequently making it difficult to accurately quantify the total magnitude of pathogen-specific CD4 T cell responses. In this study, we show that CD4 T cells become CD11a(hi)CD49d(+) after LCMV infection and retain this expression pattern into memory. During the effector phase, all the LCMV-specific IFN-γ(+) CD4 T cells display a CD11a(hi)CD49d(+) cell surface expression phenotype. In addition, only memory CD11a(hi)CD49d(+) CD4 T cells make IFN-γ after stimulation. Furthermore, upon secondary LCMV challenge, only CD11a(hi)CD49d(+) memory CD4 T cells from LCMV-immune mice undergo proliferative expansion, demonstrating that CD11a(hi)CD49d(+) CD4 T cells are truly Ag specific. Using the combination of CD11a and CD49d, we demonstrate that up to 50% of the CD4 T cells are virus specific during the peak of the LCMV response. Our results indicate that the magnitude of the virus-specific CD4 T cell response is much greater than previously recognized.  相似文献   

8.
The activation of small, resting B cells for antibody synthesis by helper T cells has been proposed to require an MHC-restricted interaction between the T and B cells. Large, activated B lymphocytes were, in contrast, thought to be activated by an unrestricted pathway. We re-examined this issue and found that both large and small size fractionated murine B lymphocytes required an MHC-restricted interaction with helper T cells to be activated for specific antibody synthesis. Polyspecific antibody synthesis in the same cultures was not dependent upon an MHC-restricted T-B interaction for any size category of B cell. These results are interpreted as reflecting the ability of antigen-specific B cells to focus and present antigen to T cells, in contrast to B cells of random specificity, which have no effective focusing mechanism for a given experimental antigen. We found that the polyspecific response required much higher antigen concentrations than the antigen-specific response, a result consistent with the antigen-focusing hypothesis.  相似文献   

9.
The outer membrane of gram-negative bacteria is a dynamic structure that is capable of altering its ultrastructure and chemistry in order to adapt to changes in its environment. In human infections, outer-membrane alterations are known to play a role in mediating serum resistance, iron uptake, adaptation by Pseudomonas aeruginosa to colonization of the lungs of cystic fibrosis patients, and adaptive resistance to the polymyxin and aminoglycoside antibiotics. This adaptive antibiotic resistance is due to alterations in the cation binding sites within the outer membrane so that these cationic antibiotics can no longer penetrate through the membrane effectively. Adaptive resistance is not stable but is maintained only in the continued presence of the antibiotic. Hence, the role that this type of resistance to cationic antibiotics plays in clinical treatment of human infections remains inadequately assessed.  相似文献   

10.
Alloantigen-specific, radiation-resistant T cells generated in mixed-lymphocyte cultures inhibited the generation of allospecific CTL responses in vitro. This regulatory T cell population was studied using mAb generated to Ag-specific suppressor factors that regulate the response to the synthetic terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Both monoclonal 984 D4.6.5 and a pool of four mAb 2441, when added in the presence of complement, eliminated alloantigen-specific inhibition of the CTL response. When separate cell cultures treated with mAb 984 or 2441 plus complement were recombined, inhibition was reestablished, suggesting that two or more populations of cells are required for active inhibition. Furthermore, neither the mAb 984 nor the mAb 2441 plus complement had any effect on any stage of CTL development. This suggests that the inhibition of the CTL response was not the result of cytolytic activity via the regulatory T cells. Experiments in which these antibodies were added without complement treatment showed that the mAb 2441 neutralized the inhibitory activity, whereas mAb 984 augmented inhibition. It is concluded from these studies that regulatory T cells originally identified in humoral immune responses also regulate cell-mediated immune responses. Suppressor epitopes are displayed on the surface of these cells that allow them to be distinguished from other T cells. These data also show the utility of the mAb 984 and 2441 raised against specific suppressor T cell products in different experimental models of immunity. These studies suggest that phenotypically distinct Ts cell populations can play a normal regulatory role in both cell-mediated and humoral immunity.  相似文献   

11.
In this study, we suggest that CD8 levels on T cells are not static, but can change and, as a result, modulate CD8(+) T cell responses. We describe three models of CD8 modulation using novel weak-agonist (K1A) and super-agonist (C2A) altered peptide ligands of the HY smcy peptide. First, we used peripheral nonresponsive CD8(low) T cells produced after peripheral HY-D(b) MHC class I tetramer stimulation of female HY TCR transgenic and wild-type mice. Second, we used genetically lowered CD8(int) T cells from heterozygote CD8(+/0) mice. Finally, we used pre-existing nonresponsive CD8(low) T cells from male HY TCR transgenic mice. In CD8(low) and CD8(high) mice, presence of a lower level of CD8 greatly decreased the avidity of the peptide-MHC for HY TCR as reflected by avidity (K(D)) and dissociation constant (T(1/2)) measurements. All three models demonstrated that lowering CD8 levels resulted in the requirement for a higher avidity peptide-MHC interaction with the TCR to respond equivalently to unmanipulated CD8(high) T cells of the same specificity. Additionally, direct injections of wild-type HY-D(b) and C2A-D(b) tetramers into female HY TCR or female B6 mice induced a high frequency of peripheral nonresponsive CD8(low) T cells, yet C2A-D(b) was superior in inducing a primed CD8(+)CD44(+) memory population. The ability to dynamically modulate the size and responsiveness of an Ag-specific T cell pool by "CD8 tuning" of the T cell during the early phases of an immune response has important implications for the balance of responsiveness, memory, and tolerance.  相似文献   

12.
T cell expansion typically is due to cognate interactions with specific Ag, although T cells can be experimentally activated through bystander mechanisms not involving specific Ag. TGF-beta1 knockout mice exhibit a striking expansion of CD4+ T cells in the liver by 11 days of age, accompanied by CD4+T cell-dependent necroinflammatory liver disease. To examine whether hepatic CD4+T cell expansion in TGF-beta1(-/-) mice is due to cognate TCR-peptide interactions, we used spectratype analysis to examine the diversity in TCR Vbeta repertoires in peripheral CD4+T cells. We reasoned that Ag-nonspecific T cell responses would yield spectratype profiles similar to those derived from control polyclonal T cell populations, whereas Ag-specific T cell responses would yield perturbed spectratype profiles. Spleen and liver CD4+T cells from 11-day-old TGF-beta1(-/-) mice characteristically exhibited highly perturbed nonpolyclonal distributions of TCR Vbeta CDR3 lengths, indicative of Ag-driven T cell responses. We quantitatively assessed spectratype perturbation to derive a spectratype complexity score. Spectratype complexity scores were considerably higher for TGF-beta1(-/-) CD4+ T cells than for TGF-beta1(+/-) CD4+T cells. TCR repertoire perturbations were apparent as early as postnatal day 3 and preceded both hepatic T cell expansion and liver damage. By contrast, TGF-beta1(-/-) CD4+ single-positive thymocytes from 11-day-old mice exhibited normal unbiased spectratype profiles. These results indicate that CD4+ T cells in TGF-beta1(-/-) mice are activated by and respond to self-Ags present in the periphery, and define a key role for TGF-beta1 in the peripheral regulation of Ag-specific CD4+ T cell responses.  相似文献   

13.
B6D2F1 mice were given three i.v. injections of ovalbumin (OA), and antigen-specific T cell clones were established from their spleen cells. One of the FcR+ T cell clones formed IgE-binding factors on incubation with OA-pulsed syngeneic macrophages. Neither soluble antigen nor macrophages alone induced factor formation. T cell hybridomas were constructed by fusion of the antigen-specific T cell clone with BW 5147 cells. Among 11 T cell hybridomas established, six clones produced IgE-binding factors on incubation with OA-pulsed BDF1 macrophages. Mouse IgE also induced the same hybridoma to form IgE-binding factors. The majority of IgE-binding factors formed by two T hybridomas and by those produced by the parent T cell clone had affinity for peanut agglutinin but for neither lentil lectin nor Con A. These hybridomas and the original T cell clone spontaneously released glycosylation-inhibiting factor, which inhibits the assembly of N-linked oligosaccharide(s) on IgE-binding factors. On antigenic stimulation, the T cell hybridomas produced both IgE-binding factors and IgG-binding factors. The IgE-binding factors consisted of three species with m.w. of 60,000, 30,000, and 15,000. Both the 60K and 15K IgE-binding factors selectively suppressed the IgE response of DNP-OA-primed rat mesenteric lymph node cells, whereas IgG-binding factors selectively suppressed the IgG response. The results indicate that antigen-primed FcR+ T cells produced IgE-suppressive factors and IgG-suppressive factors on antigenic stimulation. However, the T cell hybridomas were not committed to suppressive activity. When the hybridomas were stimulated by antigen in the presence of glycosylation-enhancing factor (GEF), the 60K, 30K, and 15K IgE-binding factors formed by the cells selectively potentiated the IgE response. IgG-binding factors formed by the cells in the presence of GEF failed to suppress the IgG response. It appears that antigen-specific FcR+ T cells regulate the antibody response through the formation of Ig-binding factors, but that the function of the cells could be switched from suppression to enhancement, depending on the environment of the cells.  相似文献   

14.
Infection of mice with the intracellular bacterium Listeria monocytogenes results in a strong CD8(+) T cell response that is critical for efficient control of infection. We used CD28-deficient mice to characterize the function of CD28 during Listeria infection, with a main emphasis on Listeria-specific CD8(+) T cells. Frequencies and effector functions of these T cells were determined using MHC class I tetramers, single cell IFN-gamma production and Listeria-specific cytotoxicity. During primary Listeria infection of CD28(-/-) mice we observed significantly reduced numbers of Listeria-specific CD8(+) T cells and only marginal levels of specific IFN-gamma production and cytotoxicity. Although frequencies were also reduced in CD28(-/-) mice during secondary response, we detected a considerable population of Listeria-specific CD8(+) T cells in these mice. In parallel, IFN-gamma production and cytotoxicity were observed, revealing that Listeria-specific CD8(+) T cells in CD28(-/-) mice expressed normal effector functions. Consistent with their impaired CD8(+) T cell activation, CD28(-/-) mice suffered from exacerbated listeriosis both after primary and secondary infection. These results demonstrate participation of CD28 signaling in the generation and expansion of Ag-specific CD8(+) T cells in listeriosis. However, Ag-specific CD8(+) T cells generated in the absence of CD28 differentiated into normal effector and memory T cells.  相似文献   

15.
CD4+ T cells are important for resistance to infection with Salmonella typhimurium. However, the Ag specificity of this T cell response is unknown. Here, we demonstrate that a significant fraction of Salmonella-specific CD4+ T cells respond to the flagellar filament protein, FliC, and that this Ag has the capacity to protect naive mice from lethal Salmonella infection. To characterize this Ag-specific response further, we generated FliC-specific CD4+ T cell clones from mice that had resolved infection with an attenuated strain of Salmonella. These clones were found to respond to an epitope from a constant region of FliC, enabling them to cross-react with flagellar proteins expressed by a number of distinct Salmonella serovars.  相似文献   

16.
A cloned effector-type suppressor T cell line, 3D10, which is known to suppress the antibody response against dinitrophenylated keyhole limpet hemocyanin (KLH), produced a soluble KLH-specific factor (TsF) that can replace the function of parental T cell clones. High activity of TsF was released spontaneously into the culture supernatant when cultured in interleukin 2 (IL 2)-containing medium, requiring no antigenic stimulation. The culture supernatant of 3D10 was also capable of inhibiting the KLH-induced proliferative response of primed T cells in an antigen-specific manner. The direct target of TsF was found to be Lyt-1+2- T cells undergoing an early stage of antigen-specific proliferation. TsF was antigen binding but lacked any other serologic markers such as I-J and immunoglobulin heavy chain-linked allotypic determinants on T cells. No genetic restriction was found in its action on allogeneic T cells. The production of IL 2 in proliferative T cells by antigenic stimulation was not inhibited by TsF. These results indicate that the TsF described here is the legitimate mediator produced by the effector-type suppressor T cell that suppresses the antigen-specific responses of Lyt-1+2- T cells. The m.w. of TsF was approximately 75,000.  相似文献   

17.
During bacterial multiplication, Listeria monocytogenes (strain EGD) secretes sulfhydryl-dependent cytotoxin, termed listeriolysin O, a virulence factor presumable promoting intracellular growth of this ubiquitous pathogen. The role of this exotoxin in the process of T cell activation was studied in vivo during the course of an experimental infection in the mouse. By using highly purified listeriolysin O, it was found that infection with viable, replicative bacteria induced in vivo the emergence of T cells specifically reacting against this exotoxin, as demonstrated by eliciting the expression of delayed-type hypersensitivity to listeriolysin O in Listeria-immune mice. The kinetics of this inflammatory reaction followed the same pattern as that observed with crude Listeria antigenic preparation classically used for the detection of delayed-type hypersensitivity, with a peak of expression by day 6 and a slow decline over the next 3 wk to a residual level, indicating the presence of memory T cells reacting with the exotoxin. This result, therefore, allowed us to identify for the first time that a pure immunogenic molecule secreted by L. monocytogenes is specifically recognized by sensitized T cells induced during the course of infection by L. monocytogenes. The expression of T cell-mediated immunity to listeriolysin O was generated by very low amounts of replicative bacteria, indicating that the exotoxin released in host tissues during the process of intracellular growth is highly immunogenic. Our data favor the view that the binding of listeriolysin O to the membrane cholesterol might be a critical event potentiating the in vivo expression of delayed sensitivity against this exotoxin. Indeed, the insertion of listeriolysin O into the cell membrane induced resistance to enzymatic proteolysis and membrane-bound listeriolysin O was significantly more effective in inducing delayed inflammatory reaction in Listeria-immune mice.  相似文献   

18.
A system in which injection of mice with an antibody to mouse IgD that they recognize as foreign stimulates a large, T cell-dependent IgG response was used to study whether Ag-specific T cell help is required to stimulate polyclonal (non-Ag-specific) IgG production in vivo. Igha x Ighb allotype heterozygous mice were injected with a conjugate of a foreign Ag coupled to a mAb specific for one of the two IgD allotypes expressed in these mice. This conjugate cross-links mIgD on B cells that express the recognized allotype. These cells process the conjugate and present the foreign Ag to Ag-specific T lymphocytes, which become activated. Thus, B cells of the recognized allotype can be stimulated by cross-linking of their mIgD, Ag-specific T cell help, non-Ag-specific cytokines, and non-Ag-specific contact with activated T cells. In contrast, B cells that express the Igh allotype not recognized by the Ag-anti-IgD antibody conjugate (bystander B cells) can be stimulated in this system only by non-Ag-specific cytokines and non-Ag-specific contact with activated T cells. Although both recognized and bystander B cells in conjugate-injected mice demonstrated substantial increases in size and Ia expression, only the recognized B cells were induced to synthesize DNA and to make a substantial polyclonal Ig response. Bystander B cells still failed to secrete IgG when mice were injected with an anti-IgD-Ag conjugate specific for the other Igh allotype as well as a mAb that cross-linked IgD of the bystander B cell allotype. These observations demonstrate that although non-Ag-specific cytokine and contact-mediated T cell help are sufficient to induce B cells to increase in size and Ia expression in anti-IgD antibody-injected mice, Ag-specific T cell help is required to stimulate the generation of an IgG response in these mice.  相似文献   

19.
Dynamics of T cell responses in HIV infection   总被引:14,自引:0,他引:14  
Cytotoxic CD8(+) T cells play a major role in the immune response against viruses. However, the dynamics of CD8(+) T cell responses during the course of a human infection are not well understood. Using tetrameric complexes in combination with a range of intracellular and extracellular markers, we present a detailed analysis of the changes in activation and differentiation undergone by Ag-specific CD8(+) T cells, in relation to Ag-specific CD4(+) T cell responses, in the context of a human infection: HIV-1. During primary HIV-1 infection, the initial population of HIV-specific CD8(+) T cells is highly activated and prone to apoptosis. The Ag-specific cells differentiate rapidly from naive to cells at a perforin low intermediate stage of differentiation, later forming a stable pool of resting cells as viral load decreases during chronic infection. These observations have significant implications for our understanding of T cell responses in human viral infections in general and indicate that the definition of effector and memory subsets in humans may need revision.  相似文献   

20.
CARMA1 is a lymphocyte-specific scaffold protein necessary for T cell activation. Deletion of CARMA1 prevents the development of allergic airway inflammation in a mouse model of asthma due to a defect in naive T cell activation. However, it is unknown if CARMA1 is important for effector and memory T cell responses after the initial establishment of inflammation, findings that would be more relevant to asthma therapies targeted to CARMA1. In the current study, we sought to elucidate the role of CARMA1 in T cells that have been previously activated. Using mice in which floxed CARMA1 exons can be selectively deleted in T cells by OX40-driven Cre recombinase (OX40(+/Cre)CARMA1(F/F)), we report that CD4(+) T cells from these mice have impaired T cell reactivation responses and NF-κB signaling in vitro. Furthermore, in an in vivo recall model of allergic airway inflammation that is dependent on memory T cell function, OX40(+/Cre)CARMA1(F/F) mice have attenuated eosinophilic airway inflammation, T cell activation, and Th2 cytokine production. Using MHC class II tetramers, we demonstrate that the development and maintenance of Ag-specific memory T cells is not affected in OX40(+/Cre)CARMA1(F/F) mice. In addition, adoptive transfer of Th2-polarized OX40(+/Cre)CARMA1(F/F) Ag-specific CD4(+) T cells into wild-type mice induces markedly less airway inflammation in response to Ag challenge than transfer of wild-type Th2 cells. These data demonstrate a novel role for CARMA1 in effector and memory T cell responses and suggest that therapeutic strategies targeting CARMA1 could help treat chronic inflammatory disorders such as asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号