首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The low molecular weight heat shock protein (HSP) profiles of the hexaploid wheat cultivar Chinese Spring and its ditelosomic series were characterized by isoelectric focusing polyacrylamide gel electrophoresis of denatured in vivo radiolabeled proteins. Comparisons of the ditelosomics (DTs) to the euploid Chinese Spring enabled the assignment of genes controlling 9 of the 13 targeted HSPs to seven chromosome arms. There did not appear to be a genome-specific action in the regulation of expression of these HSPs. There did appear to be a higher frequency of controlling genes within homoeologous DT lines 3, 4 and 7. Significant variation in protein quantity was evident among the DT lines for some HSPs, while other HSPs were remarkably stable in their expression across all DTs examined. The results are useful in identifying specific DT lines for the investigation of HSP functions in hexaploid wheat.  相似文献   

2.
Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.  相似文献   

3.
Wheat spikelets detached from the spike at anthesis were cultured on solidified media and successfully produced mature grains. These grains resembled normal grains and contained well-developed, embryos. Lower concentrations of glutamine favored dry weight increase in developing grains. Such grains were indistinguishable from grains from greenhouse-grown plants in germination on moist blotting sheets. The technique of individual spikelet culture can be used to study physiology and development of wheat grains and kernels and to study host-pathogen interactions in wheat floret diseases such as Karnal bunt.  相似文献   

4.
Intra- and inter-specific variation in CO2 assimilation rate (A) in Triticum spp. is well documented for reproductive growth stages. Research was conducted to characterize early vegetative photosynthetic variation in a diverse set of cultivated hexaploid wheat (T. aestivum L.) germplasm and in wild tetraploid (T. dicoccoides Korn) and hexaploid x tetraploid populations. Choice of hexaploid genotypes was based on maximum genetic distance between cultivars within the HRW and SRW wheat classes of the USA. The tetraploid material was produced by hybridizing two accessions of T. dicoccoides previously shown to differ widely in A and A/Chl but with similar leaf morphology. Genetic variability in the HRW and SRW gene pools was attributed to more recently developed descendent lines and unrelated lines rather than parental lines. Phenotypic distributions for A, stomatal conductance (gs), and internal CO2 concentration (Ci) in the F2 tetraploid population were continuous and showed transgressive segregation, reflecting quantitative inheritance with intermediate heritability. Variability in A was not associated with chlorophyll content or CO2 supply to the mesophyll measured as Ci. Genetic variability in A was also observed in the interspecific backcross population, 2*TAM W-101/PI 428109, thereby providing a germplasm pool to select for high A while restoring the D genome of hexaploid wheat. These results suggest that genetic improvement of vegetative assimilation rate is feasible in hexaploid wheat via homologous transfer from an alien source.Abbreviations HRW hard red winter - LA leaf area - rG genotypic correlation - rP phenotypic correlation - SRW soft red winter  相似文献   

5.
Extracts of mature grains of a large number of aneuploid derivatives of Triticum aestivum cv. Chinese Spring and of the members of five wheat-alien chromosome addition series were subjected to isoelectric focusing in polyacrylamide gels in order to study the genetic control of superoxide dismutase (SOD). Evidence was obtained that homologous structural genes for the mitochondrial form of SOD are located in the long arms of the homoeologous group 2 chromosomes of Chinese Spring and in chromosome 2R of Secale cereale cv. Imperial. The SOD gene loci located in chromosomes 2A, 2B, 2D, and 2R were designated Sod-A1, Sod-B1, Sod-D1, and Sod-R1, respectively. Chromosome-arm pairing data indicate that 2DL is not homoeologous to either 2AS or 2BL. The results of this study suggest, however, that 2BL is partially homoeologous to both 2AL and 2DL.Technical article No. 21074 of the Texas Agricultural Experiment Station. This work was supported by USDA Grant 83-CRCR-1-1322 to GEH.  相似文献   

6.
Summary The endosperm storage proteins, glutenin and gliadin, are major determinants of bread-making quality in hexaploid wheat. Genes encoding them are located on chromosomes of homoeologous groups 1 and 6. Aneuploid lines of these groups in spring wheat cultivar Chinese Spring have been used to investigate the effect of varying the dosage of chromosomes and chromosome arms upon bread-making quality, where quality has been assessed using the SDS-sedimentation test. Differences between the group 1 chromosomes for quality were greater than those between the group 6 chromosomes. The chromosomes were ranked within homoeologous groups for their effect on quality as follows (>=better quality): 1D>1B>1A and 6A>6B=6D. The relationship of chromosome dosage with quality was principally linear for four of the chromosomes, but not for 6B and 6D. Increases in the dosage of 1B, 6A and, especially, 1D, were associated with significant improvements in quality, whereas increases in the dosage of 1A were associated with reductions in quality. The effects of 1A and 1D were such that the best genotype for quality was nullisomic 1A-tetrasomic 1D. For group 1, effects of the long arm appeared in general to be more important than effects of the short arm. For group 6, effects were found associated with the long arms as well as with the short arms, a surprising result in view of the absence of genes encoding storage proteins on the long arms. Significant interactions were found between chromosomes and genetic backgrounds, and between individual chromosomes. Analysis of trials grown over two years demonstrated that, although additive environmental differences over years and genotype x years interaction were present, they were relatively small in magnitude compared with purely genetic differences.  相似文献   

7.
Summary Diallel crosses between five divergent vulgare wheat cultivars were made in order to evaluate the mode of inheritance and combining ability of grain proteins. Significant differences in grain protein content were found between cultivars and their hybrids. It was established that the inheritance of seed protein in the F1 generation included both additive and non-additive gene action.  相似文献   

8.
Summary A series of hexaploid wheat lines containing zero, two or four doses of rye chromosome arm 1RS was used to investigate the response to changes in dosage by the rye genes when in a wheat background. The quantity of protein produced by the secalin protein genes contained on 1RS was directly related to the number of copies of 1RS present in the line. No response could be detected by representative wheat proteins suggesting that the increase in secalin protein observed was due to an increase in mRNA produced when four copies of the secalin gene was present. These results suggest that increasing the dosage of alien genes introgressed into wheat may be a useful tool for enhancing their expression.Mention of a trade name or proprietary product does not constitute a guarantee, warranty or recommendation of the product by the U.S. Department of Agriculture or the University of Missouri and does not imply its approval to the exclusion of other products that may be suitable.Contribution from the Missouri Agricultural Experiment Station. Journal Series No. 11,413  相似文献   

9.
Summary Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.  相似文献   

10.
Summary Heat-shock protein (HSP) gene expression in two wheat lines cv Mustang (heat-tolerant) and cv Sturdy (heat-susceptible) were analyzed to determine if wheat genotypes differing in heat tolerance also differ in in-vitro HSP synthesis (translatable HSP mRNAs) and steady-state levels of HSP mRNA. Several sets of mRNA were isolated from seedling leaf tissues which had been heat-stressed at 37 °C for various time intervals. These mRNAs were hybridized with HSP cDNA or genomic DNA probes (HSP17, 26, 70, 98, and ubiquitin). Protein profiles were compared using in-vitro translation and 2-D gels. The Northern slot-blot data from the heat-stress treatment provide evidence that the heat-tolerant cv Mustang synthesized low molecular weight (LMW) HSP mRNA earlier during exposure to heat shock and at a higher level than did the heat-susceptible cv Sturdy. This was especially true for the chloroplast-localized HSP. The protein profiles shown by 2-D gel analysis revealed that there were not only quantitative differences of individual HSPs between the two wheat lines, but also some unique HSPs which were only found in the Mustang HSP profiles. The high level of RFLP between the two wheat lines was revealed by Southern blot hybridization utilizing a HSP17 probe. These data provide a molecular basis for further genetic analysis of the role of HSP genes in thermal tolerance in wheat.  相似文献   

11.
Anthers of three hexaploid wheat (Triticum aestivum L.) genotypes with high frequencies of albino regenerants in anther culture were compared to DH after inoculation on medium supplemented with ficoll, colchicine or maltose separately, pair-wise or combined, in an attempt to increase green plant regeneration. Maltose treatment produced more green regenerated plants than sucrose for all of the genotypes. The three chemicals combined in anther medium either reduced green plant regeneration or did not yield significantly different numbers of green regenerated plants compared to the maltose treatment. With DH fewer embryo-like structures (ELS) were obtained per 100 cultured anthers on all medium containing colchicine but greater frequencies of green plants per 100 ELS were obtained. It appeared that the increase in green regenerated plants per 100 ELS was due to a better quality of embryos that were capable of regenerating into green rather than albino plantlets. Smaller increases in green plants per 100 ELS were observed in ICR 4 and V-15 on colchicine containing medium compared to DH. Genotypic differences in anther culture response were observed for ELS per 100 cultured anthers (increased for V-37, decreased for DH and approx. the same for ICR 4 and V-15 in medium with all three chemicals compared to the sucrose control).  相似文献   

12.
Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm   总被引:15,自引:0,他引:15  
Amylose synthesis in wheat endosperm is mainly controlled by the granule-bound starch synthase of about 60 kDa, the so-called waxy (Wx) protein. The Wx proteins are the product of the Wx genes at a triplicate set of single-copy homoeoloci located on chromosomes 7A (Wx-A1), 4A (Wx-B1) and 7D (Wx-D1). Using Chinese Spring and its aneuploid lines, including nullisomic-tetrasomics, tetrasomics, ditelosomics and deletion stocks, together with single-chromosome substitution lines for these chromosomes, the effects of varying the dosage of whole chromosomes and chromosome arms, as well as the effects of null alleles, upon amylose synthesis were investigated. Nullisomic 4A and the deletion of chromosome segments carrying the Wx-B1 gene reduced the amylose content by more than 3%. A reasonable agreement was found in the substitution lines. This confirms that the absence of the Wx-B1 gene, or else substitution of this gene by its null allele, has the most striking effect on decreasing amylose synthesis. The removal of chromosomes carrying either the Wx-A1 or the Wx-D1 gene reduces the amylose content by less than 2%. A similar reduction was revealed by substitution of these two genes by the null alleles. Double dosages of chromosomes 7A, 4A and 7D did not increase amylose content, while the tetrasomic chromosomes produced more of the respective Wx proteins. This suggests that a certain level of Wx gene activity or of the Wx proteins led to the maximum amount of amylose.  相似文献   

13.
On the basis of sequence analysis, 69 known low-molecular-weight glutenin subunit (LMW-GS) genes were experimentally classified into nine groups by the deduced amino acid sequence of the highly conserved N-terminal domain. To clarify the chromosomal locations of these groups, 11 specific primer sets were designed to carry out polymerase chain reactions (PCR) with the genomic DNA of group 1 ditelosomic lines of Chinese Spring, among which nine primer sets proved to be LMW-GS group-specific. Each group of LMW-GS genes was specifically assigned on a single chromosome arm and hence to a specific locus. Therefore, these results provided the possibility to predict the chromosome location of a new LMW-GS gene based on its deduced N-terminal sequence. The validity of the classification was confirmed by the amplifications in 27 diploid wheat and Aegilops accessions. The length polymorphisms of LMW-GS genes of groups 1 and 2, and groups 3 and 4.1 were detected in diploid A-genome and S-genome accessions, respectively. The diploid wheat and Aegilops species could be used as valuable resources of novel allele variations of LMW-GS gene in the improvement of wheat quality. The nine LMW-GS group-specific primer sets could be utilized to select specific allele variations of LMW-GS genes in the marker-assisted breeding. Electronic Supplementary Material Supplementary material is available for this article at Hai Long and Yu-Ming Wei are the two authors who have contributed equally to this paper  相似文献   

14.
15.
Summary A comparison of EST-5 grain esterase phenotypes from wheat-alien amphiploid, addition and substitution genotypes, resolved by flat-bed isoelectric focusing identified homoeologous Est-5 loci on chromosome 3H of Hordeum vulgare, 3Hch of H. chilense, 3Sb of Aegilops bicornis, 3S1 of Ae. sharonensis and Ae. longissima and 6R of Secale cereale and 6Rm of S. montanum. The Est-5 genes in alien species provide evidence for chromosome homoeology with wheat.  相似文献   

16.
17.
18.
In West-Europe, intensive cereal management uses plant growth regulators (PGRs) especially for wheat. A green-house experiment compared the effects of two PGRs on flag leaf characteristics and yield of winter wheat. Chlormequat chloride + choline chloride (CCC) and chlormequat chloride + choline chloride + imazaquin (CCC+I) were applied to winter wheat at growth stage 5 (Feekes Large scale). CCC and CCC+I significantly increased flag leaf surface area at anthesis. Both treatments also enhanced chlorophyll content of the main stem flag leaf. The grain filling period was extended with PGR application by 2 days. CCC and CCC+I significantly increased net CO2 assimilation rates during the flag leaf life. No effects of PGR spraying were observed on the pattern of 14C labelled assimilate distribution. Increased grain yield was due to the increase in average grain weight. The results indicate that PGR treatments increased flag leaf contribution to grain filling. The addition of imazaquin (I) to chlormequat (CCC) improved the effects of CCC.  相似文献   

19.
Ethylene as promoter of wheat grain maturation and ear senescence   总被引:12,自引:0,他引:12  
This work was aimed at testing the involvement of ethylene in the maturation of grain and senescence of the foliar structures of the wheat inflorescence. Whole wheat ears emitted ethylene to the atmosphere. From pre-anthesis, ethylene emission progressively increased from 0.76 nl g–1FW h–1 to a peak 1.53 nl g–1FW h–1 at the hard dough stage of the grains, to fall to a minimum of 0.10 nl g–1FW h–1 at the dormant seed stage. Ethephon increased the ethylene release, hastened the process of grain maturation and senescence of the ears. Aminoethoxyvinylglycine and silver thiosulfate produced the opposite effects. It is concluded that ethylene plays a role in grain maturation and in the senescence of the green bracts of the inflorescence.Abbreviations Ag+ = silver ion - AVG = aminoethoxyvinylglycine - SAM = S-adenosylmethionine - STS = silver thiosulfate - TGW = thousand grain weight Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)  相似文献   

20.
Wheat is unique among cereals for the baking qualities of its flour, which are dependent upon the type and concentration of its proteins. As a consequence, the grain protein concentration (GPC) is one of the main determinants of wheat international market price. More than 50-70% of the final grain N is accumulated before flowering and later remobilized to the grain, N fertilization being the common practice used to produce high GPC. However, after incremental additions of N fertilizer, GPC reaches a maximum and then remains constant, without any increase in N uptake or remobilization by the crop, thus decreasing the efficiency of N fertilizer. Although, the genetic and molecular mechanisms that regulate N uptake by the roots are being clarified quickly, the regulation and physiology of N transport from the leaves to the grain remains less clear. In this review, the possible regulatory points involved in N transport to the grain and the difficulties for increasing GPC are discussed. It has been demonstrated that protein synthesis in the grain is source-limited, and that the grain can accumulate protein limited only by the amino acids provided by the phloem. It has also been shown that there is no limitation in the amino acid/sugar ratios that can be exported to the phloem. On the other hand, NO(3)(-) uptake transporters are depressed when the plant concentration of some amino acids, such as glutamine, is high. It has also been shown that a high N supply increases cytokinins concentration, preventing leaf senescence and proteolysis. Based on this information, it is postulated that there are two main regulatory points during grain filling when plant N status is ample. On the one hand, the N uptake transporters in the roots are depressed due to the high amino acids concentration in the tissues, and N uptake is low. On the other, a high amino acids concentration keeps the cytokinins level high, repressing leaf protein degradation and decreasing amino acid export to the phloem. As a consequence, GPC cannot be increased despite the ample N supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号