首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two pathways of ammonium assimilation are known in bacteria, one mediated by glutamate dehydrogenase, the other by glutamine synthetase and glutamate synthase. The activities of these three enzymes were measured in crude extracts from four Rhizobium meliloti wild-type strains, 2011, M15S, 444 and 12. All the strains had active glutamine synthetase and NADP-linked glutamate synthase. Assimilatory glutamate dehydrogenase activity was present in strains 2011, M15S, 444, but not in strain 12. Three glutamate synthase deficient mutants were isolated from strain 2011. They were unable to use 1 mM ammonium as a sole nitrogen source. However, increased ammonium concentration allowed these mutants to assimilate ammonium via glutamate dehydrogenase. It was found that the sole mode of ammonium assimilation in strain 12 is the glutamine synthetase-glutamate synthase route; whereas the two pathways are functional in strain 2011.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase  相似文献   

2.
The regulation of glutamate dehydrogenase (EC 1.4.1.4), glutamine synthetase (EC 6.3.1.2), and glutamate synthase (EC 2.6.1.53) was examined for cultures of Salmonella typhimurium grown with various nitrogen and amino acid sources. In contrast to the regulatory pattern observed in Klebsiella aerogenes, the glutamate dehydrogenase levels of S. typhimurium do not decrease when glutamine synthetase is derepressed during growth with limiting ammonia. Thus, it appears that the S. typhimurium glutamine synthetase does not regulate the synthesis of glutamate dehydrogenase as reported for K. aerogenes. The glutamate dehydrogenase activity does increase, however, during growth of a glutamate auxotroph with glutamate as a limiting amino acid source. The regulation of glutamate synthase levels is complex with the enzyme activity decreasing during growth with glutamate as a nitrogen source, and during growth of auxotrophs with either glutamine or glutamate as limiting amino acids.  相似文献   

3.
To determine whether Salmonella typhimurium has a nitrogen control response, we have examined the regulation of nitrogen utilization in two mutants with fivefold and threefold elevations in their glutamine synthetase activities. The mutants do not require glutamine for growth on glucose--ammonia medium but do have altered growth on other nitrogen sources. They grow better than an isogenic control on media containing arginine or asparate, but more slowly with proline or alanine as nitrogen sources. This unusual growth pattern is not due to altered regulation of the ammonia assimilatory enzymes, glutamate dehydrogenase and glutamate synthase, or to changes in the enzymes for aspartate degradation. However, transport for several amino acids may be affected. Measurement of amino acid uptake show that the mutants with high glutamine synthetase levels have increased rates for glutamine, arginine, aspartate, and lysine, but a decreased rate for proline. The relationship between glutamine synthetase levels and uptake was examined in two mutants with reduced, rather than increased, glutamine synthetase production. The uptake rates for glutamine and lysine were lower in these two glutamine auxotrophs than in the Gln+ controls. These results show a correlation between the glutamine synthetase levels and the uptake rates for several amino acids. In addition, the pleiotropic growth of the mutants with elevated glutamine synthetase activities suggests that a nitrogen control response exists for S. typhimurium and that it can be altered by mutations affecting glutamine synthetase regulation.  相似文献   

4.
A study was done of the pathways of nitrogen assimilation in the facultative methylotrophsPseudomonas MA andPseudomonas AM1, with ammonia or methylamine as nitrogen sources and with methylamine or succinate as carbon sources. When methylamine was the sole carbon and/or nitrogen source, both organisms possessed enzymes of the glutamine synthetase/glutamate synthase pathway, but when ammonia was the nitrogen sourcePseudomonas AM1 also synthesized glutamate dehydrogenase with a pH optimum of 9.0, andPseudomonas MA elaborated both glutamate dehydrogenase (pH optimum 7.5) and alanine dehydrogenase (pH optimum 9.0). Glutamate dehydrogenase and glutamate synthase from both organisms were solely NADPH-dependent; alanine dehydrogenase was NADH-dependent. No evidence was obtained for regulation of glutamine synthetase by adenylylation in either organism, nor did glutamine synthetase appear to regulate glutamate dehydrogenase synthesis.  相似文献   

5.
The possible role of glutamate dehydrogenase, glutamate synthase, and glutamine synthetase in the regulation of enzyme formation in the gamma-aminobutyric acid (GABA) catabolic pathway of Escherichia coli K-12 was investigated. Evidence is presented indicating that glutamine synthetase acts as a positive regulator in the E. coli GABA control system. Mutations impairing glutamate synthase activity prevent the depression of the enzymes of the GABA pathway in ammonia-limited glucose media. However, mutations resulting in constitutive synthesis of glutamine synthetase (GlnC) restore the ability of the glutamate synthase-less mutants to grow in glucose-GABA media and result in depressed synthesis of the GABA enzymes. It is suggested that the loss of glutamate synthesis activity affects the GABA control system indirectly by lowering glutamine synthetase levels.  相似文献   

6.
Wild-type Aspergillus nidulans grew equally well on NH4Cl, KNO3 or glutamine as the only nitrogen source. NADP+-dependent glutamate dehydrogenase (EC 1.4.1.4) and glutamine synthetase (GS; EC 6.3.1.2) activities varied with the type and concentration of nitrogen source supplied. Glutamate synthase (GOGAT) activity (EC 1.4.7.1) was detected but it was almost unaffected by the type and concentration of nitrogen source supplied. Ion exchange chromatography showed that the GOGAT activity was due to a distinct enzyme. Azaserine, an inhibitor of the GOGAT reaction, reduced the glutamate pool by 60%, indicating that GOGAT is involved in ammonia assimilation by metabolizing the glutamine formed by GS.  相似文献   

7.
The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all enzyme activities for nitrogen assimilation, except nitrate reductase, which could not be detected in this organelle. Glutamate synthase (NADH- and ferredoxin-dependent) and glutamate dehydrogenase were located exclusively in the chloroplast, while for nitrite reductase and glutamine synthetase an extraplastidic activity of about 20 and 60%, respectively, was measured. Cells grown on ammonium, instead of nitrate as nitrogen source, had a higher total cellular activity of the NADH-dependent glutamate synthase (+95%) and glutamate dehydrogenase (+33%) but less activity of glutamine synthetase (−10%). No activity of nitrate reductase could be detected in ammonium-grown cells. The distribution of nitrogen-assimilating enzymes among the chloroplast and the rest of the cell did not differ significantly between nitrate-grown and ammonium-grown cells. Only the plastidic portion of the glutamine synthetase increased to about 80% in cells grown on ammonium (compared to about 40% in cells grown on nitrate).  相似文献   

8.
The levels of glutamate synthase and of glutamine synthetase are both derepressed 10-fold in strain JP1449 of Escherichia coli carrying a thermosensitive mutation in the glutamyl-transfer ribonucleic acid (tRNA) synthetase and growing exponentially but at a reduced rate at a partially restrictive temperature, compared with the levels in strain AB347 isogenic with strain JP1449 except for this thermosensitive mutation and the marker aro. These two enzymes catalyze one of the two pathways for glutamate biosynthesis in E. coli, the other being defined by the glutamate dehydrogenase. We observed a correlation between the percentage of charged tRNAGlu and the level of glutamate synthase in various mutants reported to have an altered glutamyl-tRNA synthetase activity. These results suggest that a glutamyl-tRNA might be involved in the repression of the biosynthesis of the glutamate synthase and of the glutamine synthetase and would couple the regulation of the biosynthesis of these two enzymes, which can work in tandem to synthesize glutamate when the ammonia concentration is low in E. coli but whose structural genes are quite distant from each other. No derepression of the level of the glutamate dehydrogenase was observed in mutant strain JP1449 under the conditions where the levels of the glutamine synthetase and of the glutamate synthase were derepressed. This result indicates that the two pathways for glutamate biosynthesis in E. coli are under different regulatory controls. The glutamate has been reported to be probably the key regulatory element of the biosynthesis of the glutamate dehydrogenase. Our results indicate that the cell has chosen the level of glutamyl-tRNA as a more sensitive probe to regulate the biosynthesis of the enzymes of the other pathway, which must be energized at a low ammonia concentration.  相似文献   

9.
Bacillus fastidiosus was able to grow on glycerol as a carbon source when allantoin or urate was used as nitrogen source. The primary assimilatory enzyme for glycerol was glycerol kinase; glycerol dehydrogenase could not be detected. The glycerol kinase activity was increased 30-fold in allantoin/glycerol-grown cells as compared to alantoin-grown cells. Under both growth conditions high levels of glutamate dehydrogenase were found. Glutamine synthetase and glutamate synthase activities could not be demonstrated, while low levels of alanine dehydrogenase were present. It is concluded that B. fastidiosus assimilates ammonia by the NADP-dependent glutamate dehydrogenase.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

10.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

11.
Pathways of ammonia assimilation into glutamic acid were investigated in ammonia-grown and N2-fixing Clostridium kluyverii and Clostridium butyricum by measuring the specific activities of glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. C. kluyverii had NADPH-glutamate dehydrogenase with a Km of 12.0 mM for NH4+. The glutamate dehydrogenase pathway played an important role in ammonia assimilation in ammonia-grown cells but was found to play a minor role relative to that of the glutamine synthetase/NADPH-glutamate synthase pathway in nitrogen-fixing cells when the intracellular NH4+ concentration and the low affinity of the enzyme for NH4+ were taken into account. In C. butyricum grown on glucose-salt medium with ammonia or N2 as the nitrogen source, glutamate dehydrogenase activity was undetectable, and the glutamine synthetase/NADH-glutamate synthase pathway was the predominant pathway of ammonia assimilation. Under these growth conditions, C. butyricum also lacked the activity of glucose-6-phosphate dehydrogenase, which catalyzes the regeneration of NADPH from NADP+. However, high activities of glucose-6-phosphate dehydrogenase as well as of NADPH-glutamate dehydrogenase with a Km of 2.8 mM for NH4+ were present in C. butyricum after growth on complex nitrogen and carbon sources. The ammonia-assimilating pathway of N2-fixing C. butyricum, which differs from that of the previously studied Bacillus polymyxa and Bacillus macerans, is discussed in relation to possible effects of the availability of ATP and of NADPH on ammonia-assimilating pathways.  相似文献   

12.
Summary Lemna minor has the potential to assimilate ammonia via either the glutamine or glutamate pathways. A 3-4 fold variation in the level of ferredoxindependent glutamate synthase may occur, when plants are grown on different nitrogen sources, but these changes show no simple relationship to changes in the endogenous pool of glutamate. High activities of glutamate synthase and glutamine synthetase at low ammonia availability suggests that these two enzymes function in the assimilation of low ammonia concentrations. Increasing ammonia availability leads to a reduction in level of glutamate synthase and glutamine synthetase and an increase in the level of glutamate dehydrogenase. Glutamine synthetase and glutamate dehydrogenase are subject to concurrent regulation, with glutamine rather than ammonia, exerting negative control on glutamine synthetase and positive control on glutamate dehydrogenase. The changes in the ratio of these two enzymes in response to the internal pool of glutamine could regulate the direction of the flow of ammonia into amino acids via the two alternative routes of assimilation.Abbreviations GS Glutamine synthetase - GDH Glutamate dehydrogenase - GOGAT Glutamate synthase  相似文献   

13.
The principal initial product of metabolism of 13N-labeled ammonium by Anabaena cylindrica grown with either NH4+ or N2 as nitrogen source is amide-labeled glutamine. The specific activity of glutamine synthetase is approximately half as great in NH4+-grown as in N2-grown filaments. After 1.5 min of exposure to 13NH4+, the ratio of 13N in glutamate to 13N in glutamine reaches a value of approximately 0.1 for N2- and 0.15 for NH4+-grown filaments, whereas after the same period of exposure to [13N]N2, that ratio has reached a value close to unity and is rising rapidly. During pulse-chase experiments, 13N is transferred from the amide group to glutamine into glutamate, and then apparently into the alpha-amino group of glutamine. Methionine sulfoximine, an inhibitor of glutamine synthetase, inhibits the formation of glutamine. In the presence of the inhibitor, direct formation of glutamate takes place, but accounts for only a few per cent of the normal rate of formation of that amino acid; and alanine is formed about as rapidly as glutamate. Azaserine reduces formation of [13N]glutamate approximately 100-fold, with relatively little effect on the formation of [13N]glutamine. Aminooxyacetate, an inhibitor of transaminase reactions blocks transfer of 13N to aspartate, citrulline, and arginine. We conclude, on the basis of these results and others in the literature, that the glutamine synthetase/glutamate synthase pathway mediates most of the initial metabolism of ammonium in A. cylindrica, and that glutamic acid dehydrogenase and alanine dehydrogenase have only a very minor role.  相似文献   

14.
We have isolated mutant strains (nit) of Salmonella typhimurium that are defective in nitrogen metabolism. They have a reduced ability to use a variety of compounds including glutamate, proline, arginine, N-acetyl-glucosamine, alanine, and adenosine as sole nitrogen source. In addition, although they grow normally on high concentrations of ammonium chloride (greater than 1 mM) as nitrogen source, they grow substantially more slowly than wild type at low concentrations (less than 1 mM). We postulated that the inability of these strains to utilize low concentrations of ammonium chloride accounts for their poor growth on other nitrogen sources. The specific biochemical lesion in strains with a nit mutation is not known; however, mutant strains have no detectable alteration in the activities of glutamine synthetase, glutamate synthetase, or glutamate dehydrogenase, the enzymes known to be involved in assimilation of ammonia. A nit mutation is suppressed by second-site mutations in the structural gene for glutamine synthetase (glnA) that decrease glutamine synthetase activity.  相似文献   

15.
Levels of ammonia-assimilating enzymes (glutamate dehydrogenase, glutamine synthetase, glutamate synthase) were determined in extracts of Sporotrichum pulverulentum grown under different conditions with respect to both nitrogen source and concentration. Evolution of 14CO2 from 14C-synthetic lignin by fungal cultures grown under parallel conditions was also determined as a measure of lignin decomposition and the suppressive effect of nitrogen on ligninolysis confirmed. Under low nitrogen conditions, fungal extracts exhibited relatively high levels of NADP-dependent glutamate dehydrogenase and glutamine synthetase dehydrogenase. Conversely, in high nitrogen extracts, lower levels of NADP-dependent glutamate dehydrogenase and glutamine synthetase activity, and higher levels of NAD-dependent glutamate dehydrogenase, were recorded. Possible effects of enzyme activities on intracellular pool concentrations of glutamate/glutamine, and the implications for the regulation of lignin metabolism, are discussed.A preliminary report was presented at The Ekman Days 1981, International Symposium on Wood and Pulping Chemistry, Stockholm, Sweden, June 9–12, 1981.  相似文献   

16.
Neurospora crassa wild-type is almost unable to grow on glutamine as sole nitrogen and carbon source but a GDH-; GS +/- double mutant strain, lacking NADP-dependent glutamate dehydrogenase and partially lacking glutamine synthetase did grow. Under these conditions, the double mutant had a higher chemical energy content than the wild-type. Enzyme assays and labelling experiments with glutamine indicated that in the double mutant glutamine was degraded to ammonium and to carbon skeletons by glutamate synthase, the catabolic (NADH-dependent) glutamate dehydrogenase and the glutamine transaminase-omega-amidase pathway.  相似文献   

17.
Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate puruvate transaminase and glutamate oxaloacetate transaminase have been assayed in developing testa-pericarp and endosperm of two wheat varieties, namely Shera (11.6% protein) and C-306 (9.8% protein). On per organ basis, activities of all the enzymes studied, except glutamine synthetase, increased during development. Glutamine synthetase activity decreased during development in the testa-pericarp, whereas, no glutamine synthetase activity could be detected in endosperm of either variety at any stage of development. Compared to testa-pericarp, endosperm had higher activities of glutamate synthase and glutamate pyruvate transaminase. On the whole, enzyme activities in Shera were higher, as compared to C-306. Developmental patterns and relative levels of enzyme activities in the two varieties were more or less the same, when expressed on dry weight basis or as specific activities. The results suggest that ammonia assimilation in developing wheat grain takes place by the glutamate dehydrogenase pathway in the endosperm; and both by the glutamate dehydrogenase and glutamine synthetase—glutamate synthase pathways in the testa-pericarp.  相似文献   

18.
Escherichia coli K-12 hisT mutants were isolated, and their properties were studied. These mutants are derepressed for the histidine operon, map close to the purF locus at about 49.5 min on the E. coli linkage map, and lack pseudouridylate synthetase activity. The defect in this enzyme leads to the absence of pseudouridines in the anticodon loop of several transfer ribonucleic acid species, as evidenced by the altered elution profile on reversed-phase chromatography and resistance to amino acid analogues. Finally, the hisT mutants studied have a reduced growth rate that appears to be linked to hisT, although it is not known whether it is due to the same mutation. The normal generation time can be restored by supplementing the medium with adenine, uracil, and isoleucine.  相似文献   

19.
Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.  相似文献   

20.
Studies of the nitrogen nutrition and pathways of ammonia assimilation in Rhodocyclus purpureus and Rhodospirillum tenue have shown that these two seemingly related bacteria differ considerably in aspects of their nitrogen metabolism. When grown photoheterotrophically with malate as carbon source, R. purpureus utilized only NH4+ or glutamine as sole nitrogen sources and was unable to fix N2. By contrast, R. tenue was found to utilize a variety of amino acids as nitrogen sources and was a good N2 fixer. No nitrogenase activity was detected in cells of R. purpureus grown on limiting ammonia, whereas cells of R. tenue grown under identical conditions reduced acetylene to ethylene at high rates. Regardless of the nitrogen source supporting growth, extracts of cells of R. purpureus contained high levels of glutamate dehydrogenase, whereas R. tenue contained only trace levels of this enzyme. Alanine dehydrogenase activity was absent from both species. We conclude that R. purpureus is incapable of fixing molecular nitrogen and employs the glutamate dehydrogenase pathway as the primary means of assimilating NH4+ under all growth conditions. R. tenue, on the other hand, employs the glutamine synthetase/glutamate synthase pathway for the incorporation of NH4+ supplied exogenously or as the product of N2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号