首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many bacterial pathogens that invade non-phagocytic cells first interact with host cell surface receptors. Adhesion to the host cell is followed by the activation of specific host signalling pathways that mediate bacterial internalization. The food-borne Gram-positive bacterium Listeria monocytogenes makes use of two surface proteins, internalin (InlA) and InlB to engage in a species-specific manner the adhesion molecule E-cadherin and the hepatocyte growth factor receptor Met, respectively, to induce its internalization. After entry, Listeria has the capacity to spread from cell to cell and disseminate to its target organs after breaching the intestinal, blood–brain and placental barriers in human. InlA but not InlB is critical for the crossing of the intestinal barrier, whereas the conjugated action of both InlA and InlB mediates the crossing of the placental barrier. Here we review the InlA–E-cadherin interaction, the signalling downstream of this interaction, the molecular mechanisms involved in bacterial internalization and the role of InlA–E-cadherin interaction in the breaching of host barriers and the progression to listeriosis. Together, this review illustrates how in vitro data were validated by epidemiological approaches and in vivo studies using both natural hosts and genetically engineered animal models, thereby elucidating key issues of listeriosis pathophysiology.  相似文献   

2.
Listeria monocytogenes, a food-borne bacterial pathogen, enters mammalian cells by inducing its own phagocytosis. The listerial protein internalin (InlA) mediates bacterial adhesion and invasion of epithelial cells in the human intestine through specific interaction with its host cell receptor E-cadherin. We present the crystal structures of the functional domain of InlA alone and in a complex with the extracellular, N-terminal domain of human E-cadherin (hEC1). The leucine rich repeat (LRR) domain of InlA surrounds and specifically recognizes hEC1. Individual interactions were probed by mutagenesis and analytical ultracentrifugation. These include Pro16 of hEC1, a major determinant for human susceptibility to L. monocytogenes infection that is essential for intermolecular recognition. Our studies reveal the structural basis for host tro-pism of this bacterium and the molecular deception L. monocytogenes employs to exploit the E-cadherin system.  相似文献   

3.

Background  

Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells.  相似文献   

4.
Intestinal Listeria monocytogenes infection is not efficient in mice and this has been attributed to a low affinity interaction between the bacterial surface protein InlA and E-cadherin on murine intestinal epithelial cells. Previous studies using either transgenic mice expressing human E-cadherin or mouse-adapted L. monocytogenes expressing a modified InlA protein (InlAm) with high affinity for murine E-cadherin showed increased efficiency of intragastric infection. However, the large inocula used in these studies disseminated to the spleen and liver rapidly, resulting in a lethal systemic infection that made it difficult to define the natural course of intestinal infection. We describe here a novel mouse model of oral listeriosis that closely mimics all phases of human disease: (1) ingestion of contaminated food, (2) a distinct period of time during which L. monocytogenes colonize only the intestines, (3) varying degrees of systemic spread in susceptible vs. resistant mice, and (4) late stage spread to the brain. Using this natural feeding model, we showed that the type of food, the time of day when feeding occurred, and mouse gender each affected susceptibility to L. monocytogenes infection. Co-infection studies using L. monocytogenes strains that expressed either a high affinity ligand for E-cadherin (InlAm), a low affinity ligand (wild type InlA from Lm EGDe), or no InlA (ΔinlA) showed that InlA was not required to establish intestinal infection in mice. However, expression of InlAm significantly increased bacterial persistence in the underlying lamina propria and greatly enhanced dissemination to the mesenteric lymph nodes. Thus, these studies revealed a previously uncharacterized role for InlA in facilitating systemic spread via the lymphatic system after invasion of the gut mucosa.  相似文献   

5.
Many animal models of bacterial diseases are hampered by differences in tissue tropism and the course of pathogenesis. In a recent issue of Cell, by rationally mutating a surface invasion protein (InlA) to have higher binding affinity for its cognate host receptor (E-cadherin), Wollert et al. were able to "murinize"Listeria monocytogenes, creating a strain capable of invading intestinal epithelial cells in mice, mimicking the route of infection in humans.  相似文献   

6.
Listeria monocytogenes (Lm) invades the host intestine using listerial invasion proteins, internalins. The in vivo role of internalin A (InlA) and internalin B (InlB) is reported here. Intragastric (i.g.) administration and ligated loop assays with ΔinlB-Lm demonstrated that a lack of InlB significantly attenuates the invasive ability of Lm into various organs. On the other hand, InlA(m)-Lm expressing a mutant InlA with two substitutions, S192N and Y369S, which has been reported to increase the affinity of InlA to mouse E-cadherin, resulted in little increase in intestinal infection according to both ligated loop and i.g. infection assays. Lm preferentially enters ileal Peyer's patch (PP) via M cells and ΔinlB-Lm showed severely reduced ability to invade though these cells. The present results reveal the importance of InlB, which accelerates listerial invasion into M cells on ileal PPs in vivo.  相似文献   

7.
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.  相似文献   

8.
9.
《遗传学报》2021,48(12):1111-1121
The rapid accumulation of mutations in the SARS-CoV-2 Omicron variant that enabled its outbreak raises questions as to whether its proximal origin occurred in humans or another mammalian host. Here, we identified 45 point mutations that Omicron acquired since divergence from the B.1.1 lineage. We found that the Omicron spike protein sequence was subjected to stronger positive selection than that of any reported SARS-CoV-2 variants known to evolve persistently in human hosts, suggesting a possibility of host-jumping. The molecular spectrum of mutations (i.e., the relative frequency of the 12 types of base substitutions) acquired by the progenitor of Omicron was significantly different from the spectrum for viruses that evolved in human patients but resembled the spectra associated with virus evolution in a mouse cellular environment. Furthermore, mutations in the Omicron spike protein significantly overlapped with SARS-CoV-2 mutations known to promote adaptation to mouse hosts, particularly through enhanced spike protein binding affinity for the mouse cell entry receptor. Collectively, our results suggest that the progenitor of Omicron jumped from humans to mice, rapidly accumulated mutations conducive to infecting that host, then jumped back into humans, indicating an inter-species evolutionary trajectory for the Omicron outbreak.  相似文献   

10.
Candida albicans is a major cause of oropharyngeal, vulvovaginal and haematogenously disseminated candidiasis. Endocytosis of C. albicans hyphae by host cells is a prerequisite for tissue invasion. This internalization involves interactions between the fungal invasin Als3 and host E- or N-cadherin. Als3 shares some structural similarity with InlA, a major invasion protein of the bacterium Listeria monocytogenes . InlA mediates entry of L. monocytogenes into host cells through binding to E-cadherin. A role in internalization, for a non-classical stimulation of the clathrin-dependent endocytosis machinery, was recently highlighted. Based on the similarities between the C. albicans and L. monocytogenes invasion proteins, we studied the role of clathrin in the internalization of C. albicans . Using live-cell imaging and indirect immunofluorescence of epithelial cells infected with C. albicans , we observed that host E-cadherin, clathrin, dynamin and cortactin accumulated at sites of C. albicans internalization. Similarly, in endothelial cells, host N-cadherin, clathrin and cortactin accumulated at sites of fungal endocytosis. Furthermore, clathrin, dynamin or cortactin depletion strongly inhibited C. albicans internalization by epithelial cells. Finally, beads coated with Als3 were internalized in a clathrin-dependent manner. These data indicate that C. albicans , like L. monocytogenes, hijacks the clathrin-dependent endocytic machinery to invade host cells.  相似文献   

11.
Fungal plant symbionts can be highly specialized on a limited range of host genotypes and species. Understanding the genetic basis of this specialization, the mechanisms governing its establishment and the relationship between specialization and speciation is a major challenge for evolutionary biologists (Timms & Read, 1999 ). A deeper knowledge of evolutionary plant–microbe interactions could be exploited to improve agricultural management, by bringing fungal biodiversity and fungal biomass under greater and more durable human control. Previous studies on pathogens have shown that effectors, that is, small secreted proteins that modulate plant physiology to favour host colonization, play a key role in infection of novel hosts (e.g., Inoue et al., 2017 ) or in host specialization (e.g., Liao et al. ( 2016 )). Like pathogens, endophytes also manipulate the physiology of their hosts and colonize novel hosts to which they specialize (Hardoim et al., 2015 ). These biological characteristics of endophytes raise the question of similarities in the protein arsenal contributing to the specialization of pathogens and endophytes. In this issue of Molecular Ecology, Schirrmann et al. ( 2018 ) used a combination of divergence genome scans and tests for positive selection to investigate the genetic basis of specialization of two subspecies of the symbiont Epichloë typhina occurring on two different grass hosts. Their analyses suggest a key role of effectors as determinants of host specialization. This study paves the way towards the comparative analysis of the genomics of speciation among plant symbionts.  相似文献   

12.
Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells   总被引:2,自引:0,他引:2  
The bacterial pathogen Listeria monocytogenes causes food-borne illnesses leading to meningitis or abortion. Listeria provokes its internalization ('entry') into mammalian cells that are normally non-phagocytic, such as intestinal epithelial cells and hepatocytes. Entry provides access to a nutrient-rich cytosol and allows translocation across anatomical barriers. Here I discuss the two major internalization pathways used by Listeria. These pathways are initiated by binding of the bacterial surface proteins InlA or InlB to their respective host receptors, E-cadherin or Met. InlA mediates traversal of the intestinal barrier, whereas InlB promotes infection of the liver. At the cellular level, both InlA- and InlB-dependent entry require host signalling that promotes cytoskeletal rearrangements and pathogen engulfment. However, many of the specific signalling proteins in the two entry routes differ. InlA-mediated uptake uses components of adherens junctions that are coupled to F-actin and myosin, whereas InlB-dependent entry involves cytosolic adaptors that bridge Met to regulators of F-actin, including phosphoinositide 3-kinase and activators of the Arp2/3 complex. Unexpectedly, entry directed by InlB also involves endocytic components. Future work on InlA and InlB will lead to a better understanding of virulence, and may also provide novel insights into the normal biological functions of E-cadherin and Met.  相似文献   

13.
Han J  Kim HJ  Lee SC  Hong S  Park K  Jeon YH  Kim D  Cheong HK  Kim HS 《PloS one》2012,7(2):e30929
Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (K(D)) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities.  相似文献   

14.
Species specificity of the Listeria monocytogenes InlB protein   总被引:2,自引:0,他引:2  
InlA and InlB mediate L. monocytogenes entry into eukaryotic cells. InlA is required for the crossing of the intestinal and placental barriers. InlA uses E-cadherin as receptor in a species-specific manner. The human E-cadherin but not the mouse E-cadherin is a receptor for InlA. In human cells, InlB uses Met and gC1qR as receptors. By studying the role of InlB in vivo, we found that activation of Met by InlB is species-specific. In mice, InlB is important for liver and spleen colonization, but not for the crossing of the intestinal epithelium. Strikingly, the virulence of a DeltainlB deletion mutant is not attenuated in guinea pigs and rabbits. Guinea pig and rabbit cell lines do not respond to InlB, although expressing Met and gC1qR, but support InlB-mediated responses upon human Met gene transfection, indicating that InlB does not recognize or stimulate guinea pig and rabbit Met. In guinea pig cells, the effect of human Met gene transfection on InlB-dependent entry is increased upon cotransfection with human gc1qr gene, showing the additive roles of gC1qR and Met. These results unravel a second L. monocytogenes species specificity critical for understanding human listeriosis and emphasize the need for developing new animal models for studying InlA and InlB functions in the same animal model.  相似文献   

15.
Understanding the genetic constraints on pathogen evolution will help to predict the emergence of generalist pathogens that can infect a range of different host genotypes. Here we show that generalist viral pathogens are more likely to emerge during coevolution between the bacterium Pseudomonas fluorescens and the lytic phage SBW25Φ2 than when the same pathogen is challenged to adapt to a nonevolving population of novel hosts. When phages were able to adapt to nonevolving novel hosts, the resulting phenotypes had relatively narrow host ranges compared with coevolved phages. Evolved (rather than coevolved) phages also had lower virulence, although they attained virulence similar to that of coevolved phages after continued adaptation to a nonevolving population of the same host. We explain these results by using sequence data showing that the evolution of broad host range is associated with several different amino acid substitutions and therefore occurs only through repeated rounds of selection for novel infectivity alleles. These findings suggest that generalist bacteriophages are more likely to emerge through long-term coevolution with their hosts than through spontaneous adaptation to a single novel host. These results are likely to be relevant to host-parasite systems where parasite generalism can evolve through the acquisition of multiple mutations or alleles, as appears to be the case for many plant-bacteria and bacteria-virus interactions.  相似文献   

16.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection isa key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor Clq (gClq-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans(including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells,including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.  相似文献   

17.
Many major human pathogens are multihost pathogens, able to infect other vertebrate species. Describing the general patterns of host–pathogen associations across pathogen taxa is therefore important to understand risk factors for human disease emergence. However, there is a lack of comprehensive curated databases for this purpose, with most previous efforts focusing on viruses. Here, we report the largest manually compiled host–pathogen association database, covering 2,595 bacteria and viruses infecting 2,656 vertebrate hosts. We also build a tree for host species using nine mitochondrial genes, giving a quantitative measure of the phylogenetic similarity of hosts. We find that the majority of bacteria and viruses are specialists infecting only a single host species, with bacteria having a significantly higher proportion of specialists compared to viruses. Conversely, multihost viruses have a more restricted host range than multihost bacteria. We perform multiple analyses of factors associated with pathogen richness per host species and the pathogen traits associated with greater host range and zoonotic potential. We show that factors previously identified as important for zoonotic potential in viruses—such as phylogenetic range, research effort, and being vector‐borne—are also predictive in bacteria. We find that the fraction of pathogens shared between two hosts decreases with the phylogenetic distance between them. Our results suggest that host phylogenetic similarity is the primary factor for host‐switching in pathogens.  相似文献   

18.
By analogy with its human nectin1 counterpart, murine nectin1 serves as a cellular receptor for the entry of herpes simplex virus (HSV) into murine cells. HSV entry mediated by either receptor is dependent on the viral glycoprotein D (gD). Whereas human nectin1 binds gD at high affinity and in a saturable manner, murine nectin1 binds gD in a barely detectable fashion, depending on the sensitivity of the assay. The immunoglobulin type V domain of murine nectin differs from its human counterpart in 11 amino acids. To identify the key residues responsible for the high-affinity binding of gD to human nectin1, we replaced each of the 11 divergent amino acids with the human counterparts singly or in groups in an incremental manner. Replacement in murine nectin1 of six amino acids that lie within the gD binding region of human nectin1 (previously mapped to residues 64 to 94, likely the CC'C" surface) increased the gD binding activity to a limited extent. In contrast, the single P138L substitution, which lies distal from the gD binding site, markedly increased gD binding. This substitution, when coupled with downstream substitutions, exerted the greatest effect. Three-dimensional modeling of the nectin1 V domain suggested that P138 in murine nectin1 might decrease the stability of the V domain by reducing the size of beta-strand G. The results support the notion that the overall structure of V nectin1 plays a pivotal role in its ability to bind HSV gD.  相似文献   

19.
TCRs exhibit a high degree of Ag specificity, even though their affinity for the peptide/MHC ligand is in the micromolar range. To explore how Ag specificity is achieved, we studied murine T cells expressing high-affinity TCRs engineered by in vitro evolution for binding to hemoglobin peptide/class II complex (Hb/I-Ek). These TCRs were shown previously to maintain Ag specificity, despite having up to 800-fold higher affinity. We compared the response of the high-affinity TCRs and the low-affinity 3.L2 TCR toward a comprehensive set of peptides containing single substitutions at each TCR contact residue. This specificity analysis revealed that the increase in affinity resulted in a dramatic increase in the number of stimulatory peptides. The apparent discrepancy between observed degeneracy in the recognition of single amino acid-substituted Hb peptides and overall Ag specificity of the high-affinity TCRs was examined by generating chimeric peptides between the stimulatory Hb and nonstimulatory moth cytochrome c peptides. These experiments showed that MHC anchor residues significantly affected TCR recognition of peptide. The high-affinity TCRs allowed us to estimate the affinity, in the millimolar range, of immunologically relevant interactions of the TCR with peptide/MHC ligands that were previously unmeasurable because of their weak nature. Thus, through the study of high-affinity TCRs, we demonstrated that a TCR is more tolerant of single TCR contact residue substitutions than other peptide changes, revealing that recognition of Ag by T cells can exhibit both specificity and degeneracy.  相似文献   

20.
Listeria monocytogenes is a food-borne pathogen able to invade non-phagocytic cells. InlA, a L. monocytogenes surface protein, interacts with human E-cadherin to promote bacterial entry. L. monocytogenes internalization is a dynamic process involving co-ordinated actin cytoskeleton rearrangements and host cell membrane remodelling at the site of bacterial attachment. Interaction between E-cadherin and catenins is required to promote Listeria entry, and for the establishment of adherens junctions in epithelial cells. Although several molecular factors promoting E-cadherin-mediated Listeria internalization have been identified, the proteins regulating the transient actin polymerization required at the bacterial entry site are unknown. Here we show that the Arp2/3 complex acts as an actin nucleator during the InlA/E-cadherin-dependent internalization. Using a variety of approaches including siRNA, expression of dominant negative derivatives and pharmacological inhibitors, we demonstrate the crucial role of cortactin in the activation of the Arp2/3 complex during InlA-mediated entry. We also show the requirement of the small GTPase Rac1 and that of Src-tyrosine kinase activity to promote Listeria internalization. Together, these data suggest a model in which Src tyrosine kinase and Rac1 promote recruitment of cortactin and activation of Arp2/3 at Listeria entry site, mimicking events that occur during adherens junction formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号