首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Ghrelin is implicated in growth and feeding regulation in fish. The influence of ghrelin on behavior has not been well studied and the physiological role of des-fatty acid modification of this peptide is unclear. Therefore, the effects of intracerebroventricular (ICV) and intraperitoneal (IP) administration of synthetic n-octanoylated (acyl) goldfish ghrelin and des-n-octanoylated (des-acyl) ghrelin on locomotor and orexigenic activity in the goldfish were examined. ICV administration of acyl ghrelin at doses of 1 and 2 pmol/g body weight (BW) and IP administration at 16 pmol/g BW both induced significant increases in locomotor activity during for 45-60 min after treatment. Cumulative food intake was significantly increased by ICV injection of acyl ghrelin at doses of 1 and 2 pmol/g BW and IP injection at 8 and 16 pmol/g BW during the 60-min post-treatment observation period. In contrast, ICV and IP administration of des-acyl ghrelin produced no changes in locomotor and orexigenic activity. We also analyzed fasting-induced changes in the expression of ghrelin mRNA in the brain and intestine using a real-time PCR method. The level of ghrelin mRNA in the intestine, but not in the brain, obtained from fish fasted for 7 days was significantly higher than that in fish that had been fed normally. These results suggest that, in the goldfish, acyl ghrelin, but not des-acyl ghrelin, stimulates locomotor activity and enhances food intake via central and peripheral pathways.  相似文献   

2.
Yahashi S  Kang KS  Kaiya H  Matsuda K 《Peptides》2012,34(2):324-328
Ghrelin was first identified and characterized from rat stomach as an endogenous ligand for the growth hormone secretagogue (GHS) receptor (GHS-R). Ghrelin also acts as an orexigenic factor and regulates energy balance in rodents. In goldfish, native ghrelin consists of 11 molecular variants, the major form being a 17-residue peptide with n-octanoic acid modification (n-octanoyl ghrelin17), and intraperitoneal (IP) administration of n-octanoyl ghrelin17 induces central actions such as stimulation of food intake and suppression of locomotor activity through capsaicin-sensitive afferents. Four types of GHS-Rs (1a-1, 1a-2, 2a-1 and 2a-2) have been identified in goldfish, and one GHS, GHRP-6, can activate only GHS-R2a-1 in vitro. However, there is no information about the effect of GHRP-6 on food intake and locomotor activity in goldfish in vivo. Therefore, in the present study, we examined whether IP-administered GHRP-6 would mimic the orexigenic action of n-octanoyl ghrelin17 and its suppression of locomotor activity. IP administration of GHRP-6 at 1pmol/g body weight (BW) stimulated food intake, and was equipotent to the orexigenic action of n-octanoyl ghrelin17 at 10 pmol/g BW. IP-injected GHRP-6 at 1 pmol/g BW also induced a significant decrease of locomotor activity, as was the case for IP-injected n-octanoyl ghrelin17 at 10 pmol/g BW. The action of GHRP-6 was blocked by IP-preinjected capsaicin at 160 nmol/g BW. These results suggest that the central action of GHRP-6 might be mediated via the GHS-R2a-1-signaling pathway, and subsequently through capsaicin-sensitive afferents in goldfish.  相似文献   

3.
4.
Over the past decade, our knowledge of how homeostatic systems regulate food intake and body weight has increased with the discovery of circulating peptides such as leptin, acyl ghrelin, des-acyl ghrelin and obestatin. These hormones regulate the appetite and food intake by sending signals to the brain regarding the body''s nutritional status. The purpose of this study was to investigate the response of appetite-regulating hormones to exercise. Nine overweight women undertook two 2 h trials in a randomized crossover design. In the exercise trial, subjects ran for 60 min at 50% of maximal oxygen uptake followed by a 60 min rest period. In the control trial, subjects rested for 2 h. Obestatin, acyl ghrelin, des-acyl ghrelin and leptin concentrations were measured at baseline and at 20, 40, 60, 90 and 120 min after baseline. A two-way ANOVA revealed a significant (P < 0.05) interaction effect for leptin and acyl ghrelin. However, changes in obestatin and des-acyl ghrelin concentration were statistically insignificant (P > 0.05). The data indicated that although acute treadmill exercise resulted in a significant change in acyl ghrelin and leptin levels, it had no effect on plasma obestatin and des-acyl ghrelin levels.  相似文献   

5.
目的:探讨侧脑室注射obestatin对大鼠血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平的影响以及对胃排空的调控。方法:侧脑室注射obestatin,采用酶免疫测定(EIA)法检测血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平以及胃排空率的变化。结果:侧脑室分别注射0.1、0.3或1.0 nmol obestatin,大鼠血浆酰基化ghrelin、去酰基化ghrelin以及nesfatin-1水平无显著改变(P0.05),且酰基化ghrelin与去酰基化ghrelin比率无显著改变(P0.05);侧脑室注射obestatin,大鼠摄食量无显著改变,但胃排空率明显增加(P0.05);胃排空率明显延迟(P0.05)。与侧脑室注射1.0 nmol Obestatin组相比,注射1.0 nmol Obestatin+CRF,大鼠摄食量无显著改变,胃排空率明显延迟(P0.05)。各组摄食量及进入十二指肠内食物量无明显差异(P0.05)。结论:中枢obestatin促进大鼠的胃排空,可能与h/r CRF通路有关。  相似文献   

6.
7.
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.  相似文献   

8.
Intracerebroventricular (ICV) administration of gonadotropin-releasing hormone II (GnRH II), which plays a crucial role in the regulation of reproduction in vertebrates, markedly reduces food intake in goldfish. However, the neurochemical pathways involved in the anorexigenic action of GnRH II and its interaction with other neuropeptides have not yet been identified. Alpha-melanocyte-stimulating hormone (α-MSH), corticotropin-releasing hormone (CRH) and CRH-related peptides play a major role in feeding control as potent anorexigenic neuropeptides in goldfish. However, our previous study has indicated that the GnRH II-induced anorexigenic action is not blocked by treatment with melanocortin 4 receptor (MC4R) and CRH receptor antagonists. Therefore, in the present study, we further examined whether the anorexigenic effects of α-MSH and CRH in goldfish could be mediated through the GnRH receptor neuronal pathway. ICV injection of the MC4R agonist, melanotan II (80 pmol/g body weight; BW), significantly reduced food intake, and its anorexigenic effect was suppressed by ICV pre-administration of the GnRH type I receptor antagonist, antide (100 pmol/g BW). The CRH-induced (50 pmol/g BW) anorexigenic action was also blocked by treatment with antide. ICV injection of CRH (50 pmol/g BW) induced a significant increase of the GnRH II mRNA level in the hypothalamus, while ICV injection of melanotan II (80 pmol/g BW) had no effect on the level of GnRH II mRNA. These results indicate that, in goldfish, the anorexigenic actions of α-MSH and CRH are mediated through the GnRH type I receptor-signaling pathway, and that the GnRH II system regulates feeding behavior.  相似文献   

9.
In mammals, amylin (AMY) is a peptide that is secreted from the pancreas in response to a meal. AMY inhibits food intake and may also contribute to the anorectic effects of the brain-gut peptide cholecystokinin (CCK). In this study, we assessed the role of AMY in the regulation of food intake in goldfish (Carassius auratus) and its interactions with CCK. Fish were injected intraperitoneally (i.p.) with mammalian AMY and intracerebroventricularly (i.c.v.) with mammalian AMY, alone or in combination with the sulfated octapeptide CCK-8S. We also assessed the effects of i.c.v. injections of AC187, an amylin receptor antagonist on the central actions of both AMY and CCK-8S, as well as the effects of i.c.v. injections of proglumide, a CCK receptor antagonist, on the central effects of AMY. AMY injected i.p. at 100 ng/g but not 25 or 50 ng/g or i.c.v. at 10 ng/g but not 1 ng/g significantly decreased food intake as compared to saline-treated fish. Fish co-treated i.c.v. with AMY at 1 ng/g and CCK-8S at 1 ng/g had a food intake lower than that of control fish and fish treated with either 1 ng/g CCK-8S or 1 ng/g AMY, suggesting a synergy between the two systems. Whereas low i.c.v. doses of AC187 (30 ng/g) had no effect, moderate doses (50 ng/g) induced an increase in food intake, indicating a role of endogenous AMY in satiety in goldfish. Blocking central amylin receptors with i.c.v. AC187 (30 ng/g) resulted in an inhibition of both i.c.v. AMY- and CCK-induced reduction in feeding. Blocking central CCK receptors with i.c.v. proglumide (25 ng/g) resulted in an inhibition of both i.c.v. CCK-induced and AMY-induced decrease in food intake. Our results show for the first time in fish that AMY is a potent anorexigenic factor and that its actions are interdependent with those of CCK.  相似文献   

10.
Feeding regulation involves both anorectic and orexigenic neuropepetides mainly located in the hypothalamus. To gain further insight into the interaction between these two groups of regulators inhibition of feeding induced by glucagon-like peptide-1 (GLP-1) was examined during stimulation of food intake by equimolar doses of ghrelin and galanin. The experiments were carried out in freely feeding rats. Intracerebroventricular (i.c.v.) injections were accomplished through stereotaxically implanted cannulae aimed at the lateral cerebral ventricle. Food intake of standard rat chow pellets was subsequently recorded for 2 h. Ghrelin and galanin stimulated food intake significantly with no difference between these two peptides. During ghrelin stimulation GLP-1 inhibited feeding in doses between 0.015 and 1.5 nmol. During galanin stimulation of food intake a ten fold higher dose (0.15 nmol) was required to inhibit food intake. In conclusion equimolar doses of i.c.v. ghrelin and galanin are similarly effective stimuli of food intake when given alone. However in combination with an anorectic neuropeptide such as GLP-1 they have substantially different potencies of feeding stimulation. Such interaction could also be of interest for therapeutic strategies involving both regulating groups of neuropeptides.  相似文献   

11.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

12.
É Szentirmai 《PloS one》2012,7(7):e41172
Ghrelin is a brain-gut peptide hormone widely known for its orexigenic and growth hormone-releasing activities. Findings from our and other laboratories indicate a role of ghrelin in sleep regulation. The effects of exogenous ghrelin on sleep-wake activity in mice are, however, unknown. The aim of the present study was to determine the sleep-modulating effects of ghrelin after central and systemic administrations in mice. Sleep-wake activity after intracerebroventricular (i.c.v.) administration of 0.2, 1 and 5 μg ghrelin and intraperitoneal injections of 40, 100, and 400 μg/kg ghrelin prior to light onset were determined in C57BL/6 mice. In addition, body temperature, motor activity and 1-hour food intake was measured after the systemic injections. Sleep effects of systemic ghrelin (40 and 400 μg/kg) injected before dark onset were also determined. I.c.v. injection of ghrelin increased wakefulness and suppressed non-rapid-eye-movement sleep and electroencephalographic slow-wave activity in the first hour after injections. Rapid-eye-movement sleep was decreased for 2-4 hours after each dose of ghrelin. Sytemic administration of ghrelin did not induce changes in sleep-wake activity in mice at dark or light onset. Motor activity and body temperature remained unaltered and food intake was significantly increased after systemic injections of ghrelin given prior the light period. These findings indicate that the activation of central, but not peripheral, ghrelin-sensitive mechanisms elicits arousal in mice. The results are consistent with the hypothesis that the activation of the hypothalamic neuronal circuit formed by ghrelin, orexin, and neuropeptide Y neurons triggers behavioral sequence characterized by increased wakefulness, motor activity and feeding in nocturnal rodents.  相似文献   

13.
Gonadotropin-releasing hormone (GnRH) is an evolutionarily conserved neuropeptide with 10 amino acid residues, which possesses some structural variants. A molecular form known as chicken GnRH II ([His5 Trp7 Tyr8] GnRH, cGnRH II) is widely distributed in vertebrates, and has recently been implicated in the regulation of sexual behavior and food intake in an insectivore, the musk shrew. However, the influence of cGnRH II on feeding behavior has not yet been studied in model animals such as rodents and teleost fish. In this study, therefore, we investigated the role of cGnRH II in the regulation of feeding behavior in the goldfish, and examined its involvement in food intake after intracerebroventricular (ICV) administration. ICV-injected cGnRH II at graded doses, from 0.1 to 10 pmol/g body weight (BW), induced a decrease of food consumption in a dose-dependent manner during 60 min after treatment. Cumulative food intake was significantly decreased by ICV injection of cGnRH II at doses of 1 and 10 pmol/g BW during the 60-min post-treatment observation period. ICV injection of salmon GnRH ([Trp7 Leu8] GnRH, sGnRH) at doses of 0.1-10 pmol/g BW did not affect food intake. The anorexigenic action of cGnRH II was completely blocked by treatment with the GnRH type I receptor antagonist, Antide. However, the anorexigenic action of cGnRH II was not inhibited by treatment with the corticotropin-releasing hormone (CRH) 1/2 receptor antagonist, α-helical CRH(9−41), and the melanocortin 4 receptor antagonist, HS024. These results suggest that, in the goldfish, cGnRH II, but not sGnRH, acts as an anorexigenic factor, as is the case in the musk shrew, and that the anorexigenic action of cGnRH II is independent of CRH- and melanocortin-signaling pathways.  相似文献   

14.
In goldfish, intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits feeding behavior, and fasting decreases hypothalamic MCH-like immunoreactivity. However, while MCH acts as an anorexigenic factor in goldfish, in rodents MCH has an orexigenic effect. Therefore, we examined the involvement of two anorexigenic neuropeptides, alpha-melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH), in the anorexigenic action of MCH in goldfish, using an alpha-MSH receptor antagonist, HS024, and a CRH receptor antagonist, alpha-helical CRH((9-41)). ICV injection of HS024, but not alpha-helical CRH((9-41)), suppressed MCH-induced anorexigenic action for a 60-min observation period. We then examined, using a real-time PCR method, whether MCH affects the levels of mRNAs encoding various orexigenic neuropeptides, including neuropeptide Y (NPY), orexin, ghrelin and Agouti-related peptide (AgRP), in the goldfish diencephalon. ICV administration of MCH at a dose sufficient to inhibit food consumption decreased the expression of mRNAs for NPY and ghrelin, but not for orexin and AgRP. These results indicate that the anorexigenic action of MCH in the goldfish brain is mediated by the alpha-MSH signaling pathway and is accompanied by inhibition of NPY and ghrelin synthesis.  相似文献   

15.
Children with short bowel syndrome face life-threatening complications. Therefore, there is an urgent need for a new therapy to induce effective adaptation of the remnant intestine. Adaptation occurs only during feeding. We focused on preprandial acyl ghrelin and des-acyl ghrelin, and postprandial glucagon-like peptide-2 (GLP-2), which are known to have active orexigenic and trophic actions. This study aims to clarify the secretion trends of these hormones after massive small bowel resection and to obtain basic data for developing a new treatment. Sixty-three growing male rats were used: 3 were designated as controls receiving no operation and 60 were randomized into the 80% small bowel resection (80% SBR) group and the transection and re-anastomosis group. Changes in body weight, food intake, and remnant intestine morphology were also assessed for 15 days after the operation. Acyl ghrelin and des-acyl ghrelin levels increased immediately, equivalently in both operation groups (P = 0.09 and 0.70). Interestingly, in 80% SBR animals, des-acyl ghrelin peaked on day 1 and acyl ghrelin peaked on day 4 (P = 0.0007 and P = 0.049 vs controls). GLP-2 secretion was obvious in 80% SBR animals (P = 2.25 × 10−6), which increased immediately and peaked on day 4 (P = 0.009 vs. controls). Body weight and food intake in 80% SBR animals recovered to preoperative levels on day 4. Morphological adaptations were evident after day 4. Our results may suggest a management strategy to reinforce these physiological hormone secretion patterns in developing a new therapy for short bowel syndrome.  相似文献   

16.
A number of recent studies implicate the gut-brain peptide ghrelin as a putative "hunger signal". Most of these studies, however, rely on either consummatory behavior (in humans or nonhuman animals) or self-report (in humans) to draw conclusions regarding the orexigenic properties of this peptide. The present study employs the deprivation intensity discrimination paradigm to assess the interoceptive sensory properties of ghrelin in rats. In this paradigm, one group of rats was placed in a training context and presented with sucrose pellets when 24 h food deprived, but not when 1 h food deprived (24+ group). A second group was trained using the opposite sucrose-deprivation level contingency (1+ group). Learning in this paradigm was demonstrated by animals approaching the food delivery location more frequently under their rewarded compared to their non-rewarded deprivation condition (prior to actual pellet delivery). After asymptotic performance of this discrimination was achieved, these animals (1 h food deprived) were administered ghrelin or saline, either i.p. (3 or 6 nmol) or i3vt (0.1 or 1 nmol), placed in the training context, and appetitive responses were measured. Testing was conducted in extinction, eliminating confounding effects of food consumption. Results of these tests showed that 6 nmol i.p. ghrelin and 0.1 and 1 nmol i3vt ghrelin all generalized to a state of 24 h food deprivation, indicating that exogenous ghrelin has sensory properties in common with the stimuli produced by 24 h food deprivation. These results support the notion that endogenous ghrelin contributes to an interoceptive hunger cue, and that this may be a mechanism by which ghrelin influences food intake and appetitive behavior.  相似文献   

17.
MT II, agonist for MC3/4-Rs, inhibited Ghrelin's orexigenic effect in the paraventricular nucleus of the hypothalamus (PVN). To further investigate the role of the melanocortin system as mediator of ghrelin's orexigenic actions, we explored the involvement of AgRP in Ghrelin's orexigenic effect by testing the effect on food intake after their co-administration in the PVN, during the light and dark phases of feeding in rats. During both the phases of feeding, co-administration of Ghrelin with either AgRP 50 or AgRP 100 pmol into the PVN did not produce a synergistic effect on the food intake, suggesting that ghrelin induction of feeding occurs by recruiting Agrp as one of the obligatory mediators of its orexigenic effect.  相似文献   

18.
Ghrelin, a circulating growth-hormone releasing peptide derived from stomach, stimulates food intake through neuropeptide Y (NPY) neurons of the arcuate nucleus in the hypothalamus (ARC). We examined the effect of ghrelin microinjected into the ARC and the influence of intracerebroventricular (i.c.v.) pretreatment with a GHRH or NPY receptor antagonist on ghrelin-induced food intake in free-feeding male rats. Ghrelin (0.1-1 microg) stimulated food intake in a dose-dependent manner, and this effect was reduced by 55-60% by the Y(5) NPY receptor antagonist (10 microg i.c.v.), but not by the GHRH receptor antagonist MZ-4-71 (10 microg i.c.v.). We also evaluated the effects of passive ghrelin immunoneutralization by the microinjection of anti-ghrelin immunoglobulins (IgGs) intracerebroventricularly or directly into the ARC on food intake in free-feeding and fasted male rats. i.c.v. administration of anti-ghrelin IgGs decreased cumulative food intake over 24 h, whereas microinfusion of anti-ghrelin IgGs into the ARC induced only a short-lived (2 and 6 h) effect. Collectively, these data would indicate that centrally derived ghrelin has a major role in the control of food intake in rats and, in this context, blood-born ghrelin would be effective only in relation to its ability to reach the ARC, which is devoid of blood-brain barrier.  相似文献   

19.
Interleukins, in particular interleukin-1β (IL-1β), reduce food intake after peripheral and central administration, which suggests that they contribute to anorexia during various infectious, neoplastic, and autoimmune diseases. On the other hand, ghrelin stimulates food intake by acting on the central nervous system (CNS) and is considered an important regulator of food intake in both rodents and humans. In the present study, we investigated if ghrelin could reverse IL-1β-induced anorexia. Intracerebroventricular (i.c.v.) injection of 15, 30 or 45 ng/μl of IL-1β caused significant suppression of food intake in 20 h fasting animals. This effect lasted for a 24 h period. Ghrelin (0.15 nmol or 1.5 nmol/μl) produced a significant increase in cumulative food intake in normally fed animals. However, it did not alter food intake in 20 h fasting animals. Central administration of ghrelin reduced the anorexic effect of IL-1β (15 ng/μl). The effect was observed 30 min after injection and lasted for the next 24 h. This study provides evidence that ghrelin is an orexigenic peptide capable of antagonizing IL-1β-induced anorexia.  相似文献   

20.
Ghrelin, a 28-residue octanoylated peptide recently isolated from the stomach, exhibits anti-cachectic properties through regulating food intake, energy expenditure, adiposity, growth hormone secretion and immune response. Burn injury induces persistent hypermetabolism and muscle wasting. We therefore hypothesized that ghrelin may also play a role in the pathophysiology of burn-induced cachexia. Overall ghrelin expression in the stomach over 10 days after burn was significantly decreased (p = 0.0003). Total plasma ghrelin was reduced 1 day after burn. Thus, changes in ghrelin synthesis and release may contribute to burn-induced dysfunctions. Ghrelin (30 nmol/rat, i.p.) greatly stimulated 2 h food intake in rats on five separate days after burn and in control rats. On post-burn day 15, plasma growth hormone levels were significantly lower than in controls, and this was restored to normal levels by ghrelin (10 nmol/rat, i.p.). These observations suggest that ghrelin retains its ability to favorably modulate both the peripheral anabolic and the central orexigenic signals, even after thermal injury despite ongoing changes due to prolonged and profound hypermetabolism, suggesting that long-term treatment with ghrelin may attenuate burn-induced dysfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号