首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric pressure chemical ionization liquid chromatography–mass spectrometry was used in the identification of triacylglycerol molecular species in lymph samples from rats given either a structured lipid or safflower oil. The structured lipid was MLM-type (M, medium-chain fatty acid; L, long-chain fatty acid) and manufactured from caprylic acid (8:0) and the oil (safflower oil or high-oleic sunflower oil). The triacylglycerol composition of lymph varied significantly between structured triacylglycerols and safflower oil. Diacylglycerol fragment ions were found for all triacylglycerols and we could also observe the ammonium adduct molecular ion [M+NH4]+ for all the triacylglycerols at the selected conditions. Protonated molecular ions were formed from triacylglycerols containing unsaturated fatty acids, and fatty acid fragment ions were also observed in the case of strong fragmentation. The lymph triacylglycerols were identified from their ammonium adduct molecular ions and diacylglycerol fragment ions. In addition to the intact MLM-type structured triacylglycerols, the MLL- and LLL-type triacylglycerols were also identified. The absorption pathway of MLM-type structured triacylglycerols is most likely the same as that of conventional long-chain triacylglycerols, i.e. they were hydrolyzed into 2-monoacylglycerol and medium-chain fatty acids, which were then used for resynthesis of triacylglycerols. The present study thereby also demonstrates the possibility to study the absorption pathway of triacylglycerol via identification of triacylglycerol species in biological samples.  相似文献   

2.
Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.  相似文献   

3.
Medium-chain triacylglycerols (MCT) have a potential glycogen-saving effect during exercise due to rapid hydrolysis and oxidation. However, studies comparing intake of carbohydrates (CHO) plus 80-90 g MCT with intake of CHO alone have revealed different results. The present study tested performance after consumption of specific structured triacylglycerol, consisting of a mixture of medium-chain fatty acids and long-chain fatty acids, to prevent the adverse effects observed by MCT (pure medium-chain fatty acids) regarding gastrointestinal distress. Seven well-trained subjects cycled 3 h at 55% of maximum O2 uptake during which they ingested CHO or CHO plus specific structured triacylglycerols. Immediately after the constant-load cycling, the subjects performed a time trial of approximately 50-min duration. Breath and blood samples were obtained regularly during the experiment. Fatty acid composition of plasma triacylglycerols, fatty acids, and phospholipids was determined. Performance was similar after administration of CHO plus specific structured triacylglycerol [medium-, long-, and medium-chain fatty acid (MLM)] compared with CHO (50.0 +/- 1.8 and 50.8 +/- 3.6 min, respectively). No plasma 8:0 was detected in the plasma lipid classes, but the amount of phospholipid fatty acids was significantly higher after CHO+MLM compared with CHO intake. The lacking time trial improvement after intake of medium-chain fatty acids might be due to no available 8:0 in the systemic circulation. A higher level of plasma phospholipid fatty acids in the CHO+MLM compared with the CHO group was probably due to endogenous phospholipid release into chylomicrons.  相似文献   

4.
Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.  相似文献   

5.
Gastric lipolysis of milk lipids in suckling rats   总被引:2,自引:0,他引:2  
Fatty acid composition of the major lipid classes in stomach contents of suckling rats at 1, 5, 10, 17 and 20 days of lactation was compared to that of milk lipids. In milk, 98% of fatty acids were in triacylglycerols at all lactation times. Medium-chain fatty acid concentrations increased from 8% in colostrum to 26% at day 5. Fatty acid composition of stomach acylglycerols at all lactation times was different from that of milk triacylglycerols, containing less medium-chain fatty acids, 8:0 and 10:0. This preferential hydrolysis was also shown by higher concentrations of medium-chain fatty acids in the free fatty acid fraction. The lipolysis of medium-chain fatty acids from triacylglycerols resulted in the appearance of di- and monoacylglycerols with 50-100% higher amounts of 14:0 and 16:0. The similar fatty acid composition of products suggests that considerable lipolysis occurred in stomachs of suckling rats even at 1 day of age. Although there was a 10-fold increase in milk consumption, the extent of lipolysis was similar throughout the suckling period because of a parallel rise in lingual lipase levels.  相似文献   

6.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

7.
Rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3-depleted rats) display several features of the metabolic syndrome including hypertension and cardiac hypertrophy. This coincides with alteration of the cardiac muscle phospholipid and triacylglycerol fatty acid content and/or pattern. In the present study, the latter variables were measured in the cardiac endothelium of normal and omega3-depleted rats. Samples derived from four rats each were obtained from 16 female normal fed rats and three groups of 36-40 female fed omega3-depleted rats each aged 8-9, 15-16 and 22-23 weeks. At comparable mean age, the ratio between the square root of the total fatty acid content of phospholipids and cubic root of the total fatty acid content of triacylglycerols was lower in omega3-depleted rats than in control animals. The total fatty acid content of triacylglycerols was inversely related to their relative content in C20:4omega6. Other differences between omega3-depleted rats and control animals consisted in a lower content of long-chain polyunsaturated omega3 fatty acids in both phospholipids and triacylglycerols, higher content of long-chain polyunsaturated omega6 fatty acids in phospholipids, higher activity of delta9-desaturase (C16:0/C16:1omega7 and C18:0/C18:1omega9 ratios) and elongase [(C16:0 + C16:1omega7)/(C18:0 + C18:1omega9) and C20:4omega6/C22:4omega6 ratios], but impaired generation of C22:6omega3 from C22:5omega3 in the former rats. These findings support the view that cardiovascular perturbations previously documented in the omega3-depleted rats may involve impaired heart endothelial function.  相似文献   

8.
Rat milk triacylglycerols contain 35% medium-chain length fatty acids. About 70% of ingested medium-chain fatty acids are released from milk triacylglycerols in the stomach and small intestine and are absorbed directly into the portal venous system. Based on studies with the perfused suckling rat liver and in vivo studies with 2-tetradecylglycidic acid, an inhibitor of long-chain fatty acid oxidation, it is estimated that medium-chain fatty acids provide 75-80% of the substrate for ketogenesis. The preferential use of medium-chain fatty acids for ketogenesis spares long-chain fatty acids for complex lipid and membrane biosynthesis during this period of rapid growth. Although medium-chain fatty acids are the major substrate for ketogenesis, this pathway accounts for only 15% of the utilization of ingested medium-chain fatty acids, the rest presumably being oxidized directly in extrahepatic tissues.  相似文献   

9.
Most lipid emulsions for parenteral feeding of premature infants are based on long-chain triacylglycerols (LCTs), but inclusion of medium-chain triacylglycerols (MCTs) might provide a more readily oxidizable energy source. The influence of these emulsions on fatty acid composition and metabolism was studied in 12 premature neonates, who were randomly assigned to an LCT emulsion (control) or an emulsion with a mixture of MCT and LCT (1:1). On study day 7, all infants received [13C]linoleic (LA) and [13C]alpha-linolenic acid (ALA) tracers orally. Plasma phospholipid (PL) and triacylglycerol (TG) fatty acid composition and 13C enrichments of plasma PL fatty acids were determined on day 8. After 8 days of lipid infusion, plasma TGs in the MCT/LCT group had higher contents of C8:0 (0.50 +/- 0.60% vs. 0.10 +/- 0.12%; means +/- SD) and C10:0 (0.66 +/- 0.51% vs. 0.15 +/- 0.17%) than controls. LA content of plasma PLs was slightly lower in the MCT/LCT group (16.47 +/- 1.16% vs. 18.57 +/- 2.09%), whereas long-chain polyunsaturated derivatives (LC-PUFAs) of LA and ALA tended to be higher. The tracer distributions between precursors and products (LC-PUFAs) were not significantly different between groups. Both lipid emulsions achieve similar plasma essential fatty acid (EFA) contents and similar proportional conversion of EFAs to LC-PUFAs. The MCT/LCT emulsion seems to protect EFAs and LC-PUFAs from beta-oxidation.  相似文献   

10.
The hydrolysis of chylomicrons enriched in long-chain n-3 fatty acids by cardiac lipoprotein lipase was studied. In 60 min, 24.8% of the triacylglycerol fatty acids were released as free fatty acids. The fatty acids were hydrolyzed at different rates. DHA (docosahexaenoic acid, 22:6n-3) and EPA (eicosapentaenoic acid, 20:5n-3) were released at rates significantly less than average. Stearic acid (18:0), 20:1n-9, and alpha-linolenic acid (18:3n-3) were released significantly faster than average. There was no relationship between the rate of release of a fatty acid and the number of carbons or the number of double bonds. Lipoprotein lipase selectively hydrolyzes the fatty acids of chylomicron triacylglycerols. This selectively will result in remnants that are relatively depleted in 18:0, 20:1, and 18:3 and relatively enriched in 20:5 and 22:6.  相似文献   

11.
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.  相似文献   

12.
《Phytochemistry》1986,25(2):405-407
During fruit development of oil palm (Elaeis guineensis) oil deposition in the mesocarp startedca12–13 weeks after flowering (WAF) and continued until the fruit ripened at 20 WAF. Over the next 1–2 weeks oil continued to be deposited but the fruit became loose and readily detached from the bunch. The lipids extracted at this stage contained over 50 % free fatty acids andca6%, polar lipids. The major fatty acids in the storage triacylglycerols were 16:0,18:1 and 18:2. The fatty acid composition of the neutral lipid classes and polar lipids during oil deposition were similar except that the latter also contained a high proportion of 18:3. Longer chain acids (20:3 and 22:0) were detected in certain lipid classes at 8 and 12 WAF.  相似文献   

13.
Lipid metabolism was investigated during the reproductive cycle of Labidura riparia (Pallas). The lipid classes and their constitutive fatty acids present in hemolymph and ovaries were measured using thin‐layer chromatography and gas‐liquid chromatography. In the hemolymph, total lipids increase steadily from the previtellogenic period to vitellogenic arrest. These lipids are predominantly diacylglycerols and phospholipids. In the ovaries, total lipids increase during vitellogenesis then decrease during the vitellogenesis arrest period. The major lipids are triacylglycerols, followed by phospholipids. In both hemolymph and ovaries, all lipid classes contained variable proportions of seven main fatty acids: the saturated fatty acids myristic acid (14:0), palmetic acid (16:0), and stearic acid (18:0); the monounsaturated fatty acids palmitoleic acid (16:1) and oleic acid (18:1); and the polyunsaturated fatty acids linoleic acid (18:2) and linolenic acid (18:3). Unsaturated fatty acids predominate throughout the reproductive cycle. The percentage compositions of total and triacylglycerol fatty acids do not change markedly during the reproductive cycle in hemolymph nor in ovaries, with 18:2, 18:1 and 16:0 fatty acids being the major components. However, for diacylglycerols and phospholipids, the proportions of fatty acids vary systematically. For phospholipids during the vitellogenesis period, 18:2 increases considerably whereas other fatty acids decrease; for diacylglycerols, these fatty acids vary in the reverse way.  相似文献   

14.
A well-characterized crude peroxisomal fraction from brown adipose tissue was used to compare peroxisomal beta-oxidation with beta-oxidation in isolated mitochondria. The apparent Km and chain-length specificity for peroxisomal (acyl-CoA) and mitochondrial (acyl-carnitine) beta-oxidation were determined with saturated C4-C22 fatty acyls and some unsaturated fatty acyls. Peroxisomes showed the lowest Km for medium-chain (9:0-10:0) and mono-unsaturated long-chain (16:1-22:1) fatty acids, and highest oxidation rates with lauroyl-CoA (12:0). Mitochondria showed the lowest Km for long-chain fatty acids (16:0-18:0) and highest oxidation rates with 12:0-16:0 and with 18:2. These in vitro results offer an explanation of previous results obtained in situ by Foerster et al. (Foerster, E.-C., F?hrenkemper, T., Rabo, U., Graf, P. and Sies, H. (1981) Biochem. J. 196, 705-712) and indicate a role for peroxisomes in degradation of medium-chain and mono-unsaturated long-chain fatty acids. It is concluded that no mechanism, other than relative preferences, needs to be suggested for channelling of fatty acids between the two subcellular organelles.  相似文献   

15.
A systematic study was undertaken to observe the effects of dietary (dioleoyl) triacyl-sn-glycerol structure on chylomicron composition and metabolism. First studied was a series of 1,2-dioleoyl-3-(saturated)acyl-sn-glycerols, where the fatty acid esterified at the 3-position was varied from 14 to 24 carbons. Next a series of 1,3-dioleoyl-2-acyl glycerols was studied, with various fatty acids esterified at the glycerol 2-position. These stereospecific triacyl-sn-glycerols were fed to donor rats and lymph chylomicrons were isolated, analyzed, and reinjected into recipient rats to study their disappearance from plasma and delivery to tissues. As shown by their compositions, chylomicrons obtained after feeding triacylglycerols containing all sn-3 fatty acid of chain length greater than 20 carbons were under-represented, possibly due to poorer digestion by lipases, or poorer absorption by the intestine. The 18-carbon saturated chain fatty acid (stearic acid) was equally well represented in chylomicrons whether in the 2- or 3-position of the fed triacylglycerol. The presence of increased amounts of long-chain saturated fatty acids in donor chylomicron triacylglycerols affected the metabolism of chylomicrons injected into the bloodstream of recipient rats. In particular the rate of removal of labeled cholesteryl esters, tracing removal of the partially degraded chylomicron remnants was slowed by the saturated chains, with palmitic acid and the 20-carbon fatty acid, arachidic acid, showing the most severe effects. There were clear differences in the removal from plasma of injected lymph chylomicrons derived from fed triacylglycerols containing stearic acid in either the 2- or 3-position, with evidence for remnants from the symmetrical triacylglycerols being less rapidly removed from the circulating blood. This effect was investigated further by injected model emulsions of chylomicrons, where the 2-position was substituted with saturated or transunsaturated acyl chains. Quantitation of removal from the blood stream of these model lipoproteins confirmed that a saturated or transunsaturated long chain fatty acid at the 2-position of the emulsion triacylglycerols slowed remnant removal from the blood. In some cases, with both lymph chylomicron and with emulsions, the lipolytic step mediated by lipoprotein lipase was also slowed.  相似文献   

16.
Alfalfa leafcutting bees, Megachile rotundata (F.), overwinter as prepupae. The internal lipids were extracted from prepupae that had been wintered at 4 degrees C for 7 months. Megachile rotundata prepupae possessed copious quantities of internal lipids (20% of the fresh weight) that were extracted with CHCl3/methanol (2:1). Transmission electron microscopy revealed that lipids were stored within very large intracellular vacuoles. Separation by silica chromatography revealed that 88% of the internal lipids were triacylglycerols. Ester derivatives of fatty acids from triacylglycerol components were analyzed by gas chromatography-mass spectrometry and 15 fatty acid constituents were identified. The majority (76%) of the triacylglycerol fatty acids were unsaturated fatty acids. The major triacylglycerol fatty acid constituent (30%) was the C16 monounsaturated fatty acid, palmitoleic acid (16:1, hexadec-9-enoic acid), with substantial amounts of linolenic acid (18:3, octadec-9,12,15-trienoic acid, 15%), palmitic acid (16:0, hexadecanoic acid, 14%) and oleic acid (18:1, octadec-9-enoic acid, 13%). Palmitoleic acid as the major fatty acid of an insect is an unusual occurrence as well as the presence of the 16-carbon polyunsaturated fatty acids, 16:2 and 16:3. The major intact triacylglycerol components were separated and identified by high performance liquid chromatography-mass spectrometry. A complex mixture of approximately 40 triacylglycerol components were identified and major components included palmitoyl palmitoleoyl oleoyl glycerol, palmitoyl palmitoleoyl palmitoleoyl glycerol, myristoyl palmitoleoyl palmitoleoyl glycerol, myristoleoyl palmitoyl palmitoleoyl glycerol, and palmitoyl palmitoleoyl linolenoyl glycerol. The function of these internal lipids and their relevance to winter survival and post-wintering development of M. rotundata is discussed.  相似文献   

17.
During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40–50 mg·d–1·(g fresh weight)–1) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-14C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2–3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60–80% in this lipid fraction.Abbreviations ACP acyl carrier protein - FW fresh weight This work was supported by the Bundesminister für Forschung und Technologie. The authors thank S. Borchert for her suggestions for plastid preparation.  相似文献   

18.
Summary The lipid and sterol content and composition of three lipid fractions (free fatty acids/ sterols, triacylglycerols and sterol/triterpenoid esters) extracted from three stem discs of Pinus sylvestris were assessed to investigate metabolic changes related to heartwood formation. The wood was separated into (1) cambial zone, (2) outer sapwood, (3) inner sapwood, (4) transition zone, (5) outer heartwood and 6) inner heart-wood. The fractions were separated by thin-layer chromatography (TLC) and analysed by gas-liquid chromatography (GLC). The amount of fatty acids of sapwood triacylglycerols was about 1.5% (dry wt.) but a large reduction occurred in the transition zone. In contrast, noticeable amounts of free fatty acids were present only in the heart-wood. The most important fatty acids in the sapwood fractions were 16:0, 18:0, 18:1, 18:2 (the dominant fatty acid in all fractions), 18:3 and 20:3. Together 18:1 and 18:2 formed about 70% of the total triacylglycerol fatty acids. Of the sterol/ triterpenoid esters, 18:2 and 18:3 were predominant. The fatty acid composition of all fractions changed in the transition zone. The sterols found were sitosterol, stigmastanol, campesterol and campestanol. The amount of sterol esters increased towards the heartwood, and the amount of free sterols was lowest in the inner sapwood. Sitosterol was the dominant sterol in both free sterols and sterol esters.  相似文献   

19.
Vogel G  Browse J 《Plant physiology》1996,110(3):923-931
Many oilseed plants accumulate triacylglycerols that contain unusual fatty acyl structures rather than the common 16- and 18-carbon fatty acids found in membrane lipids of these plants. In vitro experiments demonstrate that triacylglycerols are synthesized via diacylglycerols in microsomal preparations and that this same sub-cellular fraction is the site for the synthesis of phosphatidylcholine, which in seeds is synthesized from diacylglycerol by CDP-choline: diacylglycerol cholinephosphotransferase. In microsomes from Cuphea lanceolata, a plant that accumulates fatty acids with 10 carbons and no double bonds (10:0) in its oil, the diacylglycerol acyltransferase exhibited 4-fold higher activity with 10:0/10:0 molecular species of diacylglycerol than with molecular species containing 18-carbon fatty acids. In castor bean (Ricinus communis), which accumulates oil containing ricinoleic acid, diricinoleoyldiacylglycerol was the favored substrate for triacylglycerol synthesis. In contrast to these modest specificities of the diacylglycerol acyltransferases, the cholinephosphotransferases from these plants and from safflower (Carthamus tinctorius) and rapeseed (Brassica napus) showed little or no specificity across a range of different diacylglycerol substrates. Consideration of these results and other data suggests that the targeting of unusual fatty acids to triacylglycerol synthesis and their exclusion from membrane lipids are not achieved on the basis of the diacylglycerol substrate specificities of the enzymes involved and may instead require the spatial separation of two different diacylglycerol pools.  相似文献   

20.
In characterizing the enzymes involved in the formation of very long-chain fatty acids (VLCFAs) in the Brassicaceae, we have generated a series of mutants of Arabidopsis thaliana that have reduced VLCFA content. Here we report the characterization of a seed lipid mutant, AS11, which, in comparison to wild type (WT), has reduced levels of 20:1 and 18:1 and accumulates 18:3 as the major fatty acid in triacylglycerols. Proportions of 18:2 remain similar to WT. Genetic analyses indicate that the fatty acid phenotype is caused by a semidominant mutation in a single nuclear gene, designated TAG1, located on chromosome 2. Biochemical analyses have shown that the AS11 phenotype is not due to a deficiency in the capacity to elongate 18:1 or to an increase in the relative delta 15 or delta 12 desaturase activities. Indeed, the ratio of desaturase/elongase activities measured in vitro is virtually identical in developing WT and AS11 seed homogenates. Rather, the fatty acid phenotype of AS11 is the result of reduced diacylglycerol acyltransferase activity throughout development, such that triacylglycerol biosynthesis is reduced. This leads to a reduction in 20:1 biosynthesis during seed development, leaving more 18:1 available for desaturation. Thus, we have demonstrated that changes to triacylglycerol biosynthesis can result in dramatic changes in fatty acid composition and, in particular, in the accumulation of VLCFAs in seed storage lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号