首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Marine scallops, with extended planktonic larval stages which can potentially disperse over large distances when advected by marine currents, are expected to possess low geographical differentiation. However, the sessile lifestyle as adult tends to form discrete "sea beds" with unique population dynamics and structure. The narrow distribution of Zhikong scallop (Chlamys farreri), its long planktonic larval stage, and the extremely hydrographic complexity in its distribution range provide an interesting case to elucidate the impact of marine currents on geographical differentiation for marine bivalves at a fine geographical scale. In this study, we analyzed genetic variation at nine microsatellite DNA loci in six locations throughout the distribution of Zhikong scallop in the Northern China. Very high genetic diversity was present in all six populations. Two populations sampled from the same marine gyre had no detectable genetic differentiation (F (ST) = 0.0013); however, the remaining four populations collected from different marine gyres or separated by strong marine currents showed low but significant genetic differentiation (F (ST) range 0.0184-0.0602). Genetic differentiation was further analyzed using the Monmonier algorithm to identify genetic barriers and using the assignment test conducted by software GeneClass2 to ascertain population membership of individuals. The genetic barriers fitting the orientation of marine gyres/currents were clearly identified, and the individual assignment analysis indicated that 95.6% of specimens were correctly allocated to one of the six populations sampled. The results support the hypothesis that significant population structure is present in Zhikong scallop at a fine geographical scale, and marine currents can be responsible for the genetic differentiation.  相似文献   

2.
Population genetic structure of sedentary marine species is expected to be shaped mainly by the dispersal ability of their larvae. Long-lived planktonic larvae can connect populations through migration and gene flow, whereas species with nondispersive benthic or direct-developing larvae are expected to have genetically differentiated populations. Poecilogonous species producing different larval types are ideal when studying the effect of developmental mode on population genetic structure and connectivity. In the spionid polychaete Pygospio elegans, different larval types have been observed between, and sometimes also within, populations. We used microsatellite markers to study population structure of European P. elegans from the Baltic Sea (BS) and North Sea (NS). We found that populations with planktonic larvae had higher genetic diversity than did populations with benthic larvae. However, this pattern may not be related to developmental mode, since in P. elegans, developmental mode may be associated with geography. Benthic larvae were more commonly seen in the brackish BS and planktonic larvae were predominant in the NS, although both larval types also are found from both areas. Significant isolation-by-distance (IBD) was found overall and within regions. Most of the pair-wise F(ST) comparisons among populations were significant, although some geographically close populations with planktonic larvae were found to be genetically similar. However, these results, together with the pattern of IBD, autocorrelation within populations, as well as high estimated local recruitment, suggest that dispersal is limited in populations with planktonic larvae as well as in those with benthic larvae. The decrease in salinity between the NS and BS causes a barrier to gene flow in many marine species. In P. elegans, low, but significant, differentiation was detected between the NS and BS (3.34% in AMOVA), but no clear transition zone was observed, indicating that larvae are not hampered by the change in salinity.  相似文献   

3.
The Atlantic sand fiddler crab Uca pugilator is an extremely abundant crab found along the eastern coast of the United States. Fiddler crabs have a life cycle with an obligatory planktonic larval phase of 30-90 days, which might be expected to lead to widespread larval dispersal and consequent genetic homogeneity over considerable distances. However, a large amount of morphological and behavioral variation is found between northern and southern populations along the eastern coast. This study was undertaken to determine the population genetic structure of U.pugilator and to determine whether these differences may have a genetic basis. The population structure of the fiddler crab was analyzed using 472 individuals collected from 12 sites along the eastern coast. PCR-based single stand conformation polymorphism (SSCP) was used to investigate between-site variation in the mitochondrial 16S rRNA gene of these individuals. Analysis of genetic variation indicated frequent gene flow between nearby localities, but much reduced levels between populations separated by larger geographic distances. Thus, despite the potential for high dispersal by planktonic larvae, population differentiation and isolation by distance is evident between northern and southern populations of U.pugilator. A high amount of genetic differentiation (FST=0.3468) was found between northern and southern regions suggesting that the morphological and behavioral differences between these two regions have a genetic basis and may represent subspecies [Current Zoology 55(2):150-157,2009].  相似文献   

4.
When the level of gene flow among populations depends upon the geographic distance separating them, genetic differentiation is relatively enhanced. Although the larval dispersal capabilities of marine organisms generally correlate with inferred levels of average gene flow, the effect of different modes of larval development on the association between gene flow and geographic distance remains unknown. In this paper, I examined the relationship between gene flow and distance in two co-occurring solitary corals. Balanophyllia elegans broods large, nonfeeding planulae that generally crawl only short distances from their place of birth before settling. In contrast, Paracyathus stearnsii free-spawns and produces small planktonic larvae presumably capable of broad dispersal by oceanic currents. I calculated F-statistics using genetic variation at six (P. stearnsii) or seven (B. elegans) polymorphic allozyme loci revealed by starch gel electrophoresis, and used these F-statistics to infer levels of gene flow. Average levels of gene flow among twelve Californian localities agreed with previous studies: the species with planktonic, feeding larvae was less genetically subdivided than the brooding species. In addition, geographic isolation between populations appeared to affect gene flow between populations in very different ways in the two species. In the brooding B. elegans, gene flow declined with increasing separation, and distance explained 31% of the variation in gene flow. In the planktonically dispersed P. stearnsii distance of separation between populations at the scale studied (10–1000 km) explained only 1% of the variation in gene flow between populations. The mechanisms generating geographic genetic differentiation in species with different modes of larval development should vary fundamentally as a result of these qualitative differences in the dependence of gene flow on distance.  相似文献   

5.
The population genetic structure of the shore crab Pachygrapsus marmoratus was studied along the Portuguese coast based on six variable microsatellite loci. Genetic differentiation among populations according to a geographic gradient was not detected. This lack of genetic structure reflects the continuous distribution of the species along the Portuguese coast and suggests that gene flow occurs within the studied distribution range. Gene flow is probably maintained by the planktonic larvae of P. marmoratus that can last up to 31 days in the plankton. Tests for population differentiation demonstrated that the Praia das Avencas population is genetically more separated from all other populations, and Bayesian methodologies tend to form 4 groups that clustered together populations that are several hundred kilometres apart. This grouping pattern could be due to coastal hydrological events that are apparently influencing larval flux. Other hypotheses to explain the significant genetic heterogeneity among populations on a local scale and the absence of geographic variation are pre- and post-settlement natural selection events. Results suggest that the forces causing genetic differentiation may be acting on a local scale and that the larval pool is possibly not always mixed homogeneously.  相似文献   

6.
The southeast Australian coast potentially includes a complex biogeographic barrier, largely lacking exposed rocky shore that may limit the dispersal of rocky intertidal taxa and contribute to the maintenance of two biogeographic regions. Surprisingly, within the 300-km barrier region, several species considered exposed rocky shore specialists occurred within sheltered sites. We analysed COI sequence variation for 10 rocky intertidal invertebrate species, with a range of life histories, to test the hypotheses that larval type and habitat specificity are strong predictors of gene flow between biogeographic regions. Our data revealed that the southeast corner of Australia includes a strong barrier to gene flow for six of eight species with planktonic larvae, and a coalescence analysis of sequence differentiation (IM model) suggests that a barrier has existed since the Pleistocene. In contrast, two direct developers were not affected by the barrier. Our comparative approach and data from earlier studies (reviewed here) do not support the hypothesis that larval type predicts gene flow across this barrier, instead we found that the ability to utilize sheltered habitat provides a clearer explanation of the phylogeographic break. Indeed, the species that displayed little or no evidence of a phylogeographic break across the barrier each displayed unexpectedly relaxed habitat specificity.  相似文献   

7.
Many marine gastropods are sedentary as adults but have planktonic larvae which can potentially be dispersed over large distances. Consequently larval transport is expected to play a prominent role in facilitating gene flow and determining population structure. The spotted babylon (Babylonia areolata) is a dioecious species possessing an approximately two week planktonic larval stage. We analyzed the population structure of the spotted babylon using amplified fragment length polymorphism (AFLP). One hundred and sixteen AFLP loci were analyzed in 63 individuals from three populations and revealed a high level of genetic diversity, with all individuals harboring a unique banding pattern. AMOVA results and an assignment test revealed that population differentiation was present. PCoA, pairwise FST and UPGMA tree all revealed that gene flow might be present only on a small geographic scale (around 160 km), but, over a large distance (around 1000 km), only reduced gene flow occurred. A mantel test indicated a highly significant positive correlation between genetic differentiation and geographical distance.  相似文献   

8.
Determining the molecular signatures of adaptive differentiation is a fundamental component of evolutionary biology. A key challenge is to identify such signatures in wild organisms, particularly between populations of highly mobile species that undergo substantial gene flow. The Canada lynx (Lynx canadensis) is one species where mainland populations appear largely undifferentiated at traditional genetic markers, despite inhabiting diverse environments and displaying phenotypic variation. Here, we used high‐throughput sequencing to investigate both neutral genetic structure and epigenetic differentiation across the distributional range of Canada lynx. Newfoundland lynx were identified as the most differentiated population at neutral genetic markers, with demographic modelling suggesting that divergence from the mainland occurred at the end of the last glaciation (20–33 KYA). In contrast, epigenetic structure revealed hidden levels of differentiation across the range coincident with environmental determinants including winter conditions, particularly in the peripheral Newfoundland and Alaskan populations. Several biological pathways related to morphology were differentially methylated between populations, suggesting that epigenetic modifications might explain morphological differences seen between geographically peripheral populations. Our results indicate that epigenetic modifications, specifically DNA methylation, are powerful markers to investigate population differentiation in wild and non‐model systems.  相似文献   

9.
Kikuchi S  Isagi Y 《Heredity》2002,88(4):313-321
Magnolia sieboldii ssp. japonica, distributed mainly in western Japan, is restricted to high elevation areas (1000-2000 m above sea level) and usually forms small isolated populations. Four microsatellite loci were assayed for 19 populations from six regions spanning the range of distribution, and the levels and distribution of genetic variation were estimated. All four loci were variable, with a total of 39 alleles, but the overall level of microsatellite genetic variation was low, especially compared with a related species, M. obovata. Genetic structure in M. sieboldii was characterised by low intrapopulational genetic variation (A = 3.74 and H(o) = 0.366 on average) and high genetic differentiation even among regional populations. Highly significant isolation-by-distance (IBD) models at the short distance were detected. Genetic drift and limited gene flow was considered to be important in determining the genetic structure within regions. Total genetic differentiation was remarkably high (F(ST) = 0.488 and R(ST) = 0.538), suggesting genetic barriers among regions. Neighbour-joining dendrograms relating the 19 populations, and further analysis on the IBD models, revealed that a stepwise mutation model was more suited than an infinite allele model to explain the genetic differentiation among regions. It is suggested that mutation at microsatellite loci might be influential in generating the genetic differentiation among regions. These results showed the potential of hypervariable microsatellite loci to evaluate the effects of genetic drift and population isolation within regions, and to detect genetic distinctiveness, in spite of the loss of overall genetic variation in M. sieboldii.  相似文献   

10.
Both historical and contemporary processes influence the genetic structure of species, but the relative roles of such processes are still difficult to access. Population genetic studies of species with recent evolutionary histories such as the New Zealand endemic scallop Pecten novaezelandiae (<1 Ma) permit testing of the effects of recent processes affecting gene flow and shaping genetic structure. In addition, studies encompassing the entire distributional range of species can provide insight into colonization processes. Analyses of genetic variation in P. novaezelandiae (952 individuals from 14 locations, genotyped at 10 microsatellite loci) revealed a weak but significant regional structure across the distributional range of the species, as well as latitudinal gradients of genetic diversity and differentiation: estimates of migration rates supported these patterns. Our results suggest that the observed genetic structure and latitudinal gradients reflect a stepping‐stone model of colonization (north to south) and emerging divergence of populations as a result of ongoing limitations to gene flow and insufficient time to reach migration–drift equilibrium. The low levels of interpopulation and interregional genetic differentiation detected over hundreds of kilometres reflect the recent evolutionary history of P. novaezelandiae and stand in contrast to patterns reported for other evolutionary older species at the same spatial scale. The outcomes of this study contribute to a better understanding of evolutionary processes influencing the genetic variation of species and provide vital information on the genetic structure of P. novaezelandiae.  相似文献   

11.
For marine invertebrates with a benthic adult form and a planktonic larva phase, the connectivity among populations is mainly based on larval dispersal. While an extended larval phase will promote gene flow, other factors such as an intensive fishery and geographical barriers could lead to changes in genetic variability. In this study, the population genetic structure of the commercial crab Metacarcinus edwardsii was analyzed along 700 km of the Chilean coast. The analysis, based on eight microsatellite loci genotyped from megalopae and adult crabs, considered temporal and spatial patterns of genetic variation. The results showed no evidence of spatial patterns in genetic structure, suggesting high connectivity among the sampling sites. The temporal analysis showed no evidence of changes in allele frequencies and no evidence of a recent bottleneck. The lack of spatial structure and allele variation over time could be explained by the interaction of factors such as i) low reproductive variance due to the capability of females to store sperm in the seminal receptacle, which can be used for successive broods, ii) high larval dispersal and iii) high individual reproductive output. Using our data as priors, a genetic modelling approach coincided, predicting this temporal and spatial stability. The same analysis showed that a reduction in population size leads to the loss of genetic variability in populations, as well as of the genetic cohesiveness between populations, pointing out the importance management for species under exploitation, such as M. edwardsii.  相似文献   

12.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

13.
The extent of genetic variation in wild Atlantic salmon parr, Sulmo salur L., from river systems in Ireland, Iceland and eastern Canada, was investigated using starch gel electrophoresis. Within Ireland, seven polymorphic enzyme loci ( sAAT-4 *, GPI-1 *, IDDH-1 *, IDDH-2 *, IDHP-3 *, MDH-3 * and mMEP-2 *) were screened in nine different rivers and nine tributaries from the River Blackwater. Significant heterogeneity in gene frequencies occurred between riverine samples and between samples from tributaries of the River Blackwater. Variation between tributaries was as great as between rivers elsewhere in the country. Levels of population differentiation were comparable to those found in other regions throughout the range of the species, and temporal stability in gene frequencies was apparent when the results were compared with previously published data. Screening of riverine samples from Iceland and eastern Canada (Newfoundland and New Brunswick) allowed the Irish results to be considered in a broader context. Irish salmon cluster in the western European group, to which may be added Icelandic populations. Salmon from eastern Canada show a high level of genetic distinctiveness from the European group.  相似文献   

14.
The population genetic structure of three species of Amazonian rodents ( Oligoryzomys microtis, Oryzomys capito , and Mesomys hispidus ) is examined for mtDNA sequence haplotypes of the cytochrome b gene by hierarchical analysis of variance and gene flow estimates based on fixation indices ( N ST) and coalescence methods. Species samples are from the same localities along 1000 km of the Rio Juruá in western Amazonian Brazil, but each species differs in important life history traits such as population size and reproductive rate. Average haplotype differentiation, hierarchical haplotype apportionment, and gene flow estimates are contrasted in discussing the current and past population structure. Two species exhibit isolation by distance patterns wherein gene flow is largely limited to geographically adjacent localities. Mesomys exhibits this pattern throughout its range along the river. More than 75% of haplotype variation is apportioned among localities and regions, and estimates of Nm for pair-wise comparisons are nearly always less than 1. Oligoryzomys shows weak isolation by distance, but only over the largest geographical distances. Nm values for this species are nearly always above 1 and most (about 80%) of haplotype variation is contained within local populations. In contrast, Oryzomys exhibits no genetic structure throughout its entire distribution; Nm values average 17 and nearly 90% of the total haplotype variance is contained within local populations. Although gene flow estimates are high, the pattern of Nm as a function of geographical distance suggests that this species experienced a more recent invasion of the region and is still in genetic disequilibrium under its current demographic conditions.  相似文献   

15.
Differences in larval developmental mode are predicted to affect ecological and evolutionary processes ranging from gene flow and population bottlenecks to rates of population recovery from anthropogenic disturbance and capacity for local adaptation. The most powerful tests of these predictions use comparisons among species to ask how phylogeographic patterns are correlated with the evolution and loss of prolonged planktonic larval development. An important and largely untested assumption of these studies is that interspecific differences in population genetic structure are mainly caused by differences in dispersal and gene flow (rather than by differences in divergence times among populations or changes in effective population sizes), and that species with similar patterns of spatial genetic variation have similar underlying temporal demographic histories. Teasing apart these temporal and spatial patterns is important for understanding the causes and consequences of evolutionary changes in larval developmental mode. New analytical methods that use the coalescent history of allelic diversity can reveal these temporal patterns, test the strength of traditional population-genetic explanations for variation in spatial structure based on differences in dispersal, and identify strongly supported alternative explanations for spatial structure based on demographic history rather than on gene flow alone. We briefly review some of these recent analytical developments, and show their potential for refining ideas about the correspondence between the evolution of larval developmental mode, population demographic history, and spatial genetic variation.  相似文献   

16.
Collin R 《Molecular ecology》2001,10(9):2249-2262
The mode of development of marine invertebrates is thought to influence levels of population structure and the location of species range endpoints via differences in dispersal ability. To examine these effects, populations of three sympatric clades of sedentary, marine gastropods in the genus Crepidula were sampled along the Atlantic and Gulf coasts of North America. A haplotype tree was constructed for each clade based on 640 bp sequences of mitochondrial cytochrome oxidase c subunit I. Examination of the tree topology, and AMOVA analysis show that species with direct development (those hatching as benthic juveniles) have higher levels of population structure than do species with planktonic development. Both species in the direct-developing C. convexa clade have high levels of geographical differentiation, with most populations representing a discrete clade of haplotypes. The planktotrophic species C. fornicata contains two major haplotype clades, both of which include samples from throughout the Atlantic coast. In this species there is no geographical differentiation among haplotypes but AMOVA analysis detects a small but statistically significant level of geographical structure. The population structure within the C. plana species complex appears also to vary with mode of development: C. atrasolea, a direct-developing species, has higher levels of population structure than does C. depressa, a sympatric planktotrophic species. The coincident occurrence of range endpoints and genetic breaks along the east coast of Florida in both direct-developing species and species with planktonic development indicates that this biogeographic break is not due to development-specific mechanisms such as hydrographic effects on larval recruitment.  相似文献   

17.
There has been much recent interest in the extent to which marine planktonic larvae connect local populations demographically and genetically. Uncertainties about the true extent of larval dispersal have impeded our understanding of the ecology and evolution of marine species as well as our attempts to effectively manage marine populations. Because direct measurements of larval movements are difficult, genetic markers have often been used for indirect measurements of gene flow among marine populations. Here we examine data from allozymes, mitochondrial DNA sequences, and microsatellite length polymorphisms to assess the extent of gene flow among populations of the burrowing crustacean Callichirus islagrande. All three types of markers revealed a genetic break between populations separated by the Louisiana Chenier Plain. The extent of mitochondrial sequence divergence across this break indicates that the nominal species, C. islagrande, consists of at least two lineages that have been reproductively isolated for about a million years. Within the eastern lineage microsatellite allele frequencies were significantly heterogeneous among populations as little as 10 km apart. Maximum likelihood estimates of gene flow and effective population size based on a coalescent model for the microsatellite data indicated that local populations are nearly closed. A model-based clustering method identified four or five groups from the microsatellite data, although individuals sampled from each location generally consisted of mixtures of these groups. This suggests a mechanism that would lead to genetic differentiation of open populations: gene flow from different source populations that are themselves genetically distinct.  相似文献   

18.
Morphological analyses were combined with genetic analyses at nine microsatellite loci to examine the determinants of gene flow at 21 spawning locations of rainbow smelt Osmerus mordax along the east coast of Canada. Associations between morphology, geography and gene flow were examined using a computational geometric approach and partial Mantel tests. Significant barriers to gene flow and discontinuities in morphology were observed between Newfoundland and mainland Canada, as well as within Newfoundland samples. On regional scales, contrasting patterns were present with restricted gene flow between Newfoundland populations ( F ST= c . 0·11) and high gene flow between mainland populations ( F ST= c . 0·017). Within Newfoundland populations, geographic distance was significantly associated with gene flow ( r = 0·85, P < 0·001) contrasting mainland samples where gene flow was most associated with phenotypic divergence ( r = 0·33, P < 0·001). At large spatial scales, weak ( r = 0·19, P = 0·02) associations between gene flow and geographic distance were observed, and moderate associations were also observed between gene flow and morphology ( r = 0·28, P < 0·001). The presence of significant genetic isolation by distance in Newfoundland samples and the clear discontinuity associated with the Cabot Strait suggest geography may be the primary determinant of gene flow. Interestingly, the association between genetic and morphological divergence within mainland samples and overall, supports the hypothesis that gene flow may be moderated by morphological divergence at larger spatial scales even in high gene flow environments.  相似文献   

19.
This study investigates the genetic structure and phylogeography of a broadcast spawning bivalve mollusc, Pinctada maxima, throughout the Indo‐West Pacific and northern Australia. DNA sequence variation of the mitochondrial cytochrome oxidase subunit I (COI) gene was analysed in 367 individuals sampled from nine populations across the Indo‐West Pacific. Hierarchical AMOVA indicated strong genetic structuring amongst populations (ΦST = 0.372, P < 0.001); however, sequence divergence between the 47 haplotypes detected was low (maximum 1.8% difference) and no deep phylogenetic divergence was observed. Results suggest the presence of genetic barriers isolating populations of the South China Sea and central Indonesian regions, which, in turn, show patterns of historical separation from northern Australian regions. In P. maxima, historical vicariance during Pleistocene low sea levels is likely to have restricted planktonic larval transport, causing genetic differentiation amongst populations. However, low genetic differentiation is observed where strong ocean currents are present and is most likely due to contemporary larval transport along these pathways. Geographical association with haplotype distributions may indicate signs of early lineage sorting arising from historical population separations, yet an absence of divergent phylogenetic clades related to geography could be the consequence of periodic pulses of high genetic exchange. We compare our results with previous microsatellite DNA analysis of these P. maxima populations, and discuss implications for future conservation management of this species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 632–646.  相似文献   

20.
A common ecological restoration approach is the reestablishment of vegetation using seed mixtures. To preserve the natural genetic pattern of plant species local seed material should be used. Consequently, seed transfer zones (seed production areas and seed provenance regions) have been delineated for ecological restoration in Germany. Although it is assumed that these transfer zones represent genetic variation, there remains a lack of empirical data. In this study, we analyzed whether seed transfer zones reflect the genetic variation of the common grassland species Lathyrus pratensis. We sampled 706 individuals from 37 populations in Bavaria, Germany and analyzed genetic variation using amplified fragment length polymorphisms. In our study, we observed higher levels of genetic variation and fragment rarity in the southern Bavarian populations compared to northern populations. Our analyses revealed a strong genetic differentiation between southern and northern Bavarian populations delineated along the Danube River. However, seed production areas and seed provenance regions reflected genetic variation of L. pratensis only to a limited degree. Our study illustrates that the level of genetic variation within populations strongly depends on population history. Furthermore, the geomorphological and climatic attributes, which have been used to delineate seed provenance regions, do not reduce gene flow among populations. Seed collections for gene banks and seed production should comprise seeds from populations in southern and northern Bavaria representing the strong genetic variation between both regions, but prioritize southern populations due to higher levels of variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号