首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Johard HA  Coast GM  Mordue W  Nässel DR 《Peptides》2003,24(10):1571-1579
In insects primary urine is produced by the Malpighian tubules under hormonal control. Here we have analysed the effects of the peptide locustatachykinin I (Lom-TK-I) on secretion in isolated Malphigian tubules. We also mapped the distribution of Lom-TK immunoreactivity in the gut in comparison with Locusta diuretic hormone (Lom-DH) and serotonin, two other factors that are active on locust tubules. Lom-TK-I produces an immediate, potent and long-lasting stimulation of fluid secretion. Furthermore, we show that Lom-TK-I acts synergistically with Lom-DH on fluid secretion and demonstrate that Lom-TKs are co-localised with Lom-DH in endocrine cells of the midgut ampullae. Thus, the two peptides might be released together to act synergistically on fluid secretion. Also serotonin and Lom-DH act synergistically and we can demonstrate a plexus of serotonin-containing axon processes over the midgut.  相似文献   

2.
We have characterized a diuretic hormone receptor from the tobacco hornworm, Manduca sexta. A single high affinity binding site for the 41 amino acid M. sexta diuretic hormone was found in membranes prepared from Malpighian tubules of fifth stadium larvae. The site has a Kd = 79 pM and Bmax = 3.1 pmol/mg protein. The dissociation rate constant was determined to be 0.11 min?1 with a corresponding half-life of 6.4 min. Receptor binding of the hormone is inhibited by Ca2+ and Mg2+, while Na+ and K+ inhibit binding to a lesser extent. Truncated diuretic hormone analogs in which up to 20 amino acids were removed from the N-terminus maintain high affinity for the receptor. A diuretic hormone from Locusta migratoria which has 43% sequence identity with the M. sexta diuretic hormone also possesses a high affinity for the receptor. Conformational analysis of the M. sexta diuretic hormone indicates the core region of the peptide assumes a helical conformation, which may have implications in the binding of the peptide to the receptor. © 1993 Wiley-Liss. Inc.  相似文献   

3.
Malpighian tubules of Namib Desert tenebrionid beetles of the genus Onymacris are strongly stimulated by homogenates of the corpora cardiaca. The corpora cardiaca of other arid-adapted tenebrionids also contain diuretic material. Biogenic amines, which could be released during the preparation of corpora cardiaca extracts, do not stimulate fluid secretion in tubules of Onymacris rugatipennis. The diuretic factor in corpora cardiaca extracts is stable to boiling and to incubation with pronase. HPLC separation of the corpora cardiaca of O. rugatipennis gives a single region with diuretic activity in both secretory and electrical bioassays. Diuretic activity can not be detected in the haemolymph of Onymacris, and injection of corpora cardiaca extracts into the beetles does not cause diuresis. Simultaneous injection of corpora cardiaca and the dye amaranth shows that the most of the dye transported by the Malpighian tubules moves anteriorly into the midgut, indicating fluid recycling by this route. The most likely function for this “diuretic hormone” is clearance of metabolic wastes from the haemolymph.  相似文献   

4.
We have isolated a peptide from brains and corpora cardiaca of Locusta migratoria which is immunologically related to the diuretic hormone of Manduca sexta. We determined its structure as a 46 amino acid linear peptide with 43-50% identity to the M. sexta hormone. Moreover, we showed that the new peptide functions as a diuretic hormone in L. migratoria, stimulating urine production by Malpighian tubules and elevating levels of cAMP in tubules.  相似文献   

5.
The ultrastructure of the Malpighian tubules of the adult desert locust, Schistocerca gregaria, is described. Male and female adults possess about 233 tubules, which empty proximally into the midgut-ileal region of the alimentary canal by way of 12 ampullae. The tubules vary from 10 mm to 23 mm in length. About one third of them are directed anteriorly, attaching distally at the caeca, while the remainder are directed posteriorly, attaching to other tubules, the rectum or large tracheal trunks adjacent to the hindgut. The Malpighian tubules from all locations examined consist of three ultrastructurally distinct regions: proximal, middle, and distal, referring to their position relative to the midgut. All cell types possess ultrastructural features characteristic of ion transporting tissue, i.e., elaboration of the basal and apical membranes and a close association of these membranes with mitochondria. The distal and proximal segments are short (1.5-1.7 mm) and heavily tracheated, and each is composed of a single, distinct cell type. The middle region is the longest segment of the Malpighian tubule and is composed of two distinct cell types, primary and secondary. Both cell types are binucleate. The more numerous primary cells have large nuclei, contain laminate concretions in membrane-bound vacuoles, and possess large microvilli that contain mitochondria. The secondary cells are smaller and possess smaller nuclei. The microvilli are reduced and lack mitochondria. Secondary cells do not contain laminate concretions. The possible compartmentalization of ion and fluid transport function based on segmentation in the Malpighian tubules is discussed.  相似文献   

6.
Summary A novel secretory cell type in the initial segment of the Malpighian tubules of the locusts Schistocerca gregaria and Locusta migratoria is described ultrastructurally and studied by means of immunocytochemical techniques. The cells show abundant rough endoplasmic reticulum with interspersed Golgi zones. The richness of the cell secretory machinery and the presence of apical dense plemorphic granules suggest a role in secretion of proteinaceous material to the tubule lumen. The surprising finding of ACTH (1–24)-, -MSH-, and 7B2-like immunoreactivity for this cell is discussed.  相似文献   

7.
8.
Two environmental parameters, feeding status and salinity, are expected to affect water and ion balance of the aquatic larvae of Aedes aegypti. Evidence was obtained for regulation of Malpighian tubule fluid secretion rates in response to changes in each of these parameters. Exposure to increased salinity induces release into the hemolymph of material with diuretic effects on Malpighian tubules. Diuretic material is present in hemolymph of larvae raised in higher salinities, rapidly appears in the hemolymph of larvae following transfer from dilute water to higher salinity, and rapidly disappears from the hemolymph following transfer from higher salinity to dilute water. Feeding status affects diuretic properties of both hemolymph and Malpighian tubules. Feeding causes hemolymph to become diuretic relative to hemolymph from nonfeeding larvae. Malpighian tubules removed from feeding larvae have greater basal fluid secretion rates and also appear to have greater maximal fluid secretion capacity than do tubules removed from nonfeeding larvae. Larval hemolymph [5-HT] was found to increase fivefold in response to elevated salinity but was unaffected by feeding status. Methiothepin, a 5-HT receptor antagonist, inhibited stimulation of fluid secretion by 5-HT and blocked the diuretic effects of hemolymph from larvae exposed to higher salinity but was without effect on stimulation of fluid secretion by diuretic peptide. During the course of this investigation, a preliminary pharmacological characterization of the 5-HT receptor on Aedes Malpighian tubules, suggesting that this receptor may be pharmacologically distinct from other described insect 5-HT receptors, was obtained. Arch. Insect Biochem. Physiol. 34:123–141, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
5-Hydroxytryptamine (5-HT) stimulates fluid secretion by semi-isolated Malpighian tubules of Locusta in a dose-dependent manner. The threshold of stimulation is between 10(-8) and 10(-7) M 5-HT; maximal activation occurs at doses greater than 10(-6) M. Relative to the activation induced by diuretic hormone (storage lobe extracts), 5-HT increases the rate of fluid secretion by only 65%. Phentolamine, the alpha-adrenergic blocker, failed to inhibit either DH or 5-HT stimulated secretion. Diuretic hormone raises the levels of intracellular of cAMP, and activates adenylate cyclase in plasma membrane preparations of Locusta Malpighian tubules. 5-HT (10(-4) M) has no effect in either assay system. Thus 5-HT can stimulate fluid secretion independently of cAMP. A hypothetical model for hormone stimulated fluid secretion by Locusta Malpighian tubules, involving dual-receptor activation, is proposed. Other biogenic amines, including octopamine, adrenalin, dopamine, synephrine and the formamidine chlordimeform were tested for their ability to stimulate fluid secretion. Only dopamine showed a weakly stimulatory effect.  相似文献   

10.
The relationship between diuretic hormone (DH) and adenosine 3′:5′-cyclic monophosphate (cyclic AMP) in Rhodnius Malpighian tubules has been investigated. Direct measurement of cyclic AMP levels during stimulation of the tubules by DH supports the view that cyclic AMP is a ‘second messenger’ in this system.Also, the activity of endogenous cyclic AMP phosphodiesterase and its inhibition by theophylline has been investigated briefly. Certain other 3′:5′-cyclic nucleotides have been examined for diuretic activity on Rhodnius Malpighian tubules.  相似文献   

11.
The migratory locust (Locusta migratoria) contains two neuropeptides structurally related to mammalian arginine-vasopressin: a 9-residue monomer, without known biological activity, and its antiparallel dimer: the arginine-vasopressin-like insect diuretic hormone which increases urine production at the Malpighian tubules level. We demonstrate hereunder that a transformation monomer-to-dimer-to a degradative product occurs in several steps. (1) A transformation monomer-to-dimer takes place in the suboesophageal ganglion, the site of biosynthesis of the monomer, obviously enzymatically controlled. (2) Monomer and dimer are simultaneously released from the suboesophageal ganglion into the haemolymph where the transformation monomer-to-dimer continues. (3) Dimer is then transported to its target-tissue, the Malpighian tubules, where it is degradated by another enzymatic process.  相似文献   

12.
The blood sucking insect Rhodnius has hormonal mechanisms controllingfluid secretion by the upper Malpighian tubules (diuretic hormone);KCl reabsorption by the lower tubules; and, possibly, fluidabsorption from the midgut. The adaptations of the diuretichormone release system to the rapid onset and subsequent maintenanceof a massive post-feed diuresis are described. Possible waysof coordinating the activities of the three transporting epitheliaare discussed. Reabsorption of KCl, once fully hormonally activated,is directly regulated by haemolymph K levels, but haemolymphvolume is envisaged to be controlled hormonally, through regulationof midgut fluid transport. The possibility of feedback controlby hormones on their release sites is discussed.  相似文献   

13.
Summary The endocrine cells of the midgut epithelium of the desert locust are found dispersed among the digestive cells and are similar to those of the vertebrate gut. According to their reactivity to silver impregnation techniques and the ultrastructural features of the secretory granules (shape, electron-density, size, and structure) 10 types of endocrine cell have been identified, of which seven are located in the main segment of the midgut or in the enteric caeca, and the other three seem to be present only in the ampullae through which the Malpighian tubules drain into the gut. The endocrine cells have a slender cytoplasmic process that reaches the gut lumen, a feature that supports the receptosecretory nature postulated for this cellular type in insects as well as vertebrates. Antisera directed against mammalian gastrin, CCK, insulin, pancreatic polypeptide and bombesin reacted with some of the endocrine cells. This is the first time that insulin- and bombesin-like immunoreactive cells have been described in the midgut of an insect.  相似文献   

14.
The rate of secretion of the Malpighian tubules of Glossina austeni is controlled by a diuretic hormone. This hormone is present in the nervous tissue of the fly together with a degradative enzyme that can be activated by boiling. It is demonstrated that the Malpighian tubules are able to destroy the diuretic hormone; they may therefore participate in the control of diuresis. The diuretic hormone appears to be a heat-stable, non-dialysable, alcohol-soluble molecule, containing amino acid, glucose and sialic acid residues.  相似文献   

15.
The development of the Malpighian tubules is studied in Cloeon dipterum through all stages from the youngest larva to the adult. The Malpighian tubules are found to be outgrowths of the posterior part of the endodermal midgut and not of the ectodermal hindgut. In the adult the part of the intestine with the tubule openings becomes separated by an ingrowing fold of the epithelium from the anterior main part of the midgut that forms a large thin-walled and air-filled bladder. The characteristics of the developmental stages, which served to determine the age of the animals, are given.  相似文献   

16.
Although the mealworm Tenebrio molitor inhabits very dry environments, it has at least two diuretic peptides, which increase fluid secretion by the free portions of the Malpighian tubules. Unlike other insect corticotropin-releasing factor (CRF)-related peptides isolated to date, these are non-amidated peptides. The immunocytochemical localization of Tenmo-DH(37) was investigated using antisera raised against this hormone. Immunoreactive neurosecretory cells were found in the brain and abdominal ganglia with immunoreactive processes projecting to the peripheral nervous system. Intense staining of the neurohaemal release site, the corpora cardiaca, was observed. In addition, neurosecretory cells immunoreactive to Tenmo-DH(37) were found in the posterior midgut and a network of immunoreactive nerve processes extended over the surface of the midgut. Tenmo-DH(37) is widely distributed and its staining pattern resembles that found for other, amidated CRF-related diuretic peptides.  相似文献   

17.
In Locusta migratoria a cyclic AMP-specific phosphodiesterase (PDE) was found in the following tissues: flight muscles, leg muscles, gonads, fat body, Malpighian tubules, and midgut. In all tissues the enzyme is present in a soluble and a structure-bound form. The relative activities of these two forms are characteristic for each tissue. The intracellular localization of the enzyme in muscle was studied by differential centrifugation. It was found to be present only in the fraction which sedimented at 1500 g and in the 105,000 g supernatant. In the 1500 g pellet PDE seems to be strongly associated with the contractile proteins. No cAMP was hydrolysed by the mitochondrial and microsomal fraction.  相似文献   

18.
5-Hydroxytryptamine (5-HT, serotonin) acts as a diuretic hormone in Rhodnius prolixus, where it increases to 0.1 μM in the haemolymph during feeding and stimulates the fluid secretion in isolated Malpighian tubules. The ouabain-sensitive (Na++K+)ATPase activity present in homogenates of Malpighian tubules from unfed Rhodnius prolixus is inhibited 60% by 0.01 μM 5-HT. This inhibition is reversed by ketanserin, a 5-HT2 receptor antagonist in mammals, and also by GDPβS, a competitive inhibitor of G-protein GTPase activity. GTPγS, a nonhydrolysable analog of GTP, and cholera toxin, a Gs-protein activator, also inhibit the ouabain-sensitive (Na++K+)ATPase activity, while pertussis toxin, a Gi-protein inhibitor, has no effect. The (Na++K+)ATPase activity is inhibited 55% by 0.4–100 μM dibutyryl-cAMP in the presence of IBMX, a phosphodiesterase inhibitor, which also potentiates the effect of a low concentration of 5-HT. The cAMP-dependent protein kinase inhibitor peptide abolishes the 5-HT effect. These data suggest that the (Na++K+)ATPase activity in Malpighian tubules is inhibited by 5-HT through activation of Gs-protein and a cAMP-dependent protein kinase. Inhibition of the Na++K+ pump would contribute to the diuretic effect of 5-HT. Arch. Insect Biochem. Physiol. 36:203–214, 1997. © 1997 Wiley- Liss, Inc.  相似文献   

19.
In vivo increase in haemolymph volume of canavanine-treated locusts substantiates our previous in vitro findings that canavanine inhibits fluid secretion by locust Malpighian tubules. Furthermore when diuretic hormone is applied in vivo after canavanine treatment haemolymph volume is drastically reduced below levels retained in locusts untreated with canavanine. Again this is in accord with canavanine potentiation of semi-isolated Malpighian tubules and enhanced fluid secretion in vitro. The response is specific to canavanine; compounds similar in structure (arginine, argininic acid, citrulline, canaline, ornithine and homoserine) have no effect on the rate of fluid secreted by Malpighian tubules. Only partial competition is obtained with uridine homoserine.  相似文献   

20.
The sour dyes azocarmine and indigocarmine are excreted through the Malpighian tubules and the midgut after injection into the body cavity of third instar Drosophila hydei larvae. After injection, the other organs are free of dyes. The epithelium of the midgut does not allow orally applied dyes to pass into the haemolymph. Ouabain diminishes significantly the content of dyes in the cavity of the Malpighian tubules and of the midgut. The maximal concentration of azocarmine decreases in the Malpighian tubules to about 65 per cent and in the midgut to about 70 per cent. Indigocarmine decreases in the Malpighian tubules to about 55 per cent. The content of indigocarmine of the midgut does not change significantly after ouabain injections. As ouabain inhibits active ion transport, the decrease of the concentration of dyes is seen as proof of the coupling of active ion transport processes and of excretion of the dyes. Moreover, this decrease points to an ouabain-sensitive transport mechanism, which is localized in the epithelia of the Malpighian tubules and midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号